Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
Nanoscale. 2015 Oct 7;7(37):15251-7. doi: 10.1039/c5nr04069h.
Herein, we constructed inverted PBDTTT-CF:PC70BM bulk-heterojunction organic solar cells by introducing Au nanoparticles to a ZnO buffer layer and a great improvement in energy conversion efficiency has been realized. To discover the positive roles of such plasmonic nanoparticles in the process of solar energy conversion, photovoltaic devices with the same architecture but different sized Au nanoparticles were purposely fabricated and it has been observed that the overall efficiency can be remarkably improved from 6.67% to 7.86% by embedding 41 nm Au nanoparticles in the buffer layer. The devices with other sizes of Au nanoparticles show a relatively low performance. Subsequent investigations including finite difference time domain simulation and transient photoluminescence studies reveal that the existence of the plasmonic particles could not only improve the optical absorption and facilitate the exciton separation, but can also benefit the collection of charge carriers. Thus, this paper provides a comprehensive perspective on the roles of plasmonic particles in organic solar cells and insights into the photo energy conversion process in the plasmonic surroundings.
在这里,我们通过在 ZnO 缓冲层中引入 Au 纳米粒子来构建了倒置 PBDTTT-CF:PC70BM 体异质结有机太阳能电池,实现了能量转换效率的大幅提高。为了发现这种等离子体纳米粒子在太阳能转换过程中的积极作用,我们特意制备了具有相同结构但不同尺寸 Au 纳米粒子的光伏器件,并且观察到通过在缓冲层中嵌入 41nm 的 Au 纳米粒子,可以将整体效率从 6.67%显著提高到 7.86%。具有其他尺寸 Au 纳米粒子的器件表现出相对较低的性能。包括有限差分时间域模拟和瞬态光致发光研究在内的后续研究表明,等离子体颗粒的存在不仅可以提高光吸收并促进激子分离,还可以有利于载流子的收集。因此,本文全面阐述了等离子体颗粒在有机太阳能电池中的作用,并深入了解了在等离子体环境中的光能量转换过程。