Isobe Masaharu, Krauth Werner
Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
Laboratoire de Physique Statistique, Ecole Normale Supérieure/PSL Research University, UPMC, CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France.
J Chem Phys. 2015 Aug 28;143(8):084509. doi: 10.1063/1.4929529.
We simulate crystallization and melting with local Monte Carlo (LMC), with event-chain Monte Carlo (ECMC), and with event-driven molecular dynamics (EDMD) in systems with up to one million three-dimensional hard spheres. We illustrate that our implementations of the three algorithms rigorously coincide in their equilibrium properties. We then study nucleation in the NVE ensemble from the fcc crystal into the homogeneous liquid phase and from the liquid into the homogeneous crystal. ECMC and EDMD both approach equilibrium orders of magnitude faster than LMC. ECMC is also notably faster than EDMD, especially for the equilibration into a crystal from a disordered initial condition at high density. ECMC can be trivially implemented for hard-sphere and for soft-sphere potentials, and we suggest possible applications of this algorithm for studying jamming and the physics of glasses, as well as disordered systems.
我们在包含多达一百万个三维硬球的系统中,使用局部蒙特卡罗(LMC)、事件链蒙特卡罗(ECMC)和事件驱动分子动力学(EDMD)来模拟结晶和熔化过程。我们证明了这三种算法的实现方式在平衡性质上严格一致。然后,我们研究了在NVE系综中从面心立方晶体到均匀液相以及从液相到均匀晶体的成核过程。ECMC和EDMD达到平衡的速度都比LMC快几个数量级。ECMC也明显比EDMD快,特别是在高密度下从无序初始条件达到晶体平衡时。ECMC可以很容易地应用于硬球和软球势,我们还提出了该算法在研究阻塞、玻璃物理以及无序系统方面的可能应用。