Luu Ha Manh, Klink Camiel, Niessen Wiro, Moelker Adriaan, van Walsum Theo
Departments of Radiology and Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Dr. Molewaterplein 50/60, Rotterdam 3015 GE, The Netherlands.
Department of Radiology, Erasmus MC, Dr. Molewaterplein 50/60, Rotterdam 3015 GE, The Netherlands.
Med Phys. 2015 Sep;42(9):5559-67. doi: 10.1118/1.4927790.
In image-guided radio frequency ablation for liver cancer treatment, pre- and post-interventional CT images are typically used to verify the treatment success of the therapy. In current clinical practice, the tumor zone in the diagnostic, preinterventional images is mentally or manually mapped to the ablation zone in the post-interventional images to decide success of the treatment. However, liver deformation and differences in image quality as well as in texture of the ablation zone and the tumor area make the mental or manual registration a challenging task. Purpose of this paper is to develop an automatic framework to register the pre-interventional image to the post-interventional image.
The authors propose a registration approach enabling a nonrigid deformation of the tumor to the ablation zone, while keeping locally rigid deformation of the tumor area. The method was evaluated on CT images of 38 patient datasets from Erasmus MC. The evaluation is based on Dice coefficients of the liver segmentation on both the pre-interventional and post-interventional images, and mean distances between the liver segmentations. Additionally, residual distances after registration between corresponding landmarks and local mean surface distance in the images were computed.
The results show that rigid registration gives a Dice coefficient of 87.9%, a mean distance of the liver surfaces of 5.53 mm, and a landmark error of 5.38 mm, while non-rigid registration with local rigid deformation has a Dice coefficient of 92.2%, a mean distance between the liver segmentation boundaries near the tumor area of 3.83 mm, and a landmark error of 2.91 mm, where a part of this error can be attributed to the slice spacing in the authors' CT images.
This method is thus a promising tool to assess the success of RFA liver cancer treatment.
在图像引导下的肝癌射频消融治疗中,通常使用介入前和介入后的CT图像来验证治疗的成功与否。在当前的临床实践中,通过在脑海中或手动将诊断性介入前图像中的肿瘤区域映射到介入后图像中的消融区域,来判断治疗是否成功。然而,肝脏变形、图像质量差异以及消融区域和肿瘤区域的纹理差异,使得这种在脑海中或手动进行的配准成为一项具有挑战性的任务。本文的目的是开发一种自动框架,将介入前图像与介入后图像进行配准。
作者提出了一种配准方法,使肿瘤能够非刚性地变形到消融区域,同时保持肿瘤区域的局部刚性变形。该方法在来自伊拉斯姆斯医学中心的38例患者数据集的CT图像上进行了评估。评估基于介入前和介入后图像上肝脏分割的骰子系数以及肝脏分割之间的平均距离。此外,还计算了配准后相应地标之间的残余距离以及图像中的局部平均表面距离。
结果表明,刚性配准的骰子系数为87.9%,肝脏表面的平均距离为5.53毫米,地标误差为5.38毫米,而具有局部刚性变形的非刚性配准的骰子系数为92.2%,肿瘤区域附近肝脏分割边界之间的平均距离为3.83毫米,地标误差为2.91毫米,其中部分误差可归因于作者CT图像中的切片间距。
因此,该方法是评估肝癌射频消融治疗成功与否的一种有前景的工具。