Suppr超能文献

扶手椅型二硫化钼纳米带电子结构的调制

Modulation of Electronic Structure of Armchair MoS Nanoribbon.

作者信息

Zhang Long, Wan Langhui, Yu Yunjin, Wang Bin, Xu Fuming, Wei Yadong, Zhao Yang

出版信息

J Phys Chem C Nanomater Interfaces. 2015;119(38):22164-22171. doi: 10.1021/acs.jpcc.5b04747. Epub 2015 Sep 2.

Abstract

We perform first-principles calculations on electronic structures of armchair MoS2 nanoribbons (AMoS2NRs) passivated by non-metal atoms. In contrast to bare AMoS2NR (AMoS2NR-bare) or purely hydrogen (H) edge-terminated AMoS2NR (AMoS2NR-H), it is found that H and oxygen (O) hybrid edge-terminated AMoS2NR (AMoS2NR-H-O) is more stable. AMoS2NR-H-O exhibits a direct band gap of about 1.43 eV, which is larger than those of pristine AMoS2NR (about 0.61 eV) and AMoS2NR-H (about 0.60 eV), and even exceeds the band gap of bulk MoS2 (about 0.86 eV) and is close to that of monolayer MoS2 (about 1.67 eV). The remarkable band gap of AMoS2NR-H-O is attributed to the charge redistribution on the edge atoms of MoS2 nanoribbon, especially the charges on the edge Mo atoms. Detailed calculations of AMoS2NR-H-O reveal that over 70% of the total density of states (DOS) of the conduction band minimum and the valence band maximum are contributed by the Mo atoms. In particular, edge Mo atoms play a crucial role in modulating the electronic structure. In addition, we have studied a series of functionalized AMoS2NR-H-X with X = S, F, C, N, and P, respectively. It is found that AMoS2NR-H-X with X = S, 2F, C possess remarkable electronic band gaps, while AMoS2NR-H-X with X = F, N, P are metallic. Our studies suggest that non-metal atom hybrid passivation can efficiently tune the electronic band gap of MoS2 nanoribbon and open a new route to obtain MoS2 based practical nanoelectronic device and photo¬voltaic device.

摘要

我们对由非金属原子钝化的扶手椅型二硫化钼纳米带(AMoS2NRs)的电子结构进行了第一性原理计算。与裸露的AMoS2NR(AMoS2NR-裸)或仅由氢(H)边缘终止的AMoS2NR(AMoS2NR-H)相比,发现氢和氧(O)混合边缘终止的AMoS2NR(AMoS2NR-H-O)更稳定。AMoS2NR-H-O表现出约1.43 eV的直接带隙,大于原始AMoS2NR(约0.61 eV)和AMoS2NR-H(约0.60 eV)的带隙,甚至超过体相二硫化钼的带隙(约0.86 eV),并接近单层二硫化钼的带隙(约1.67 eV)。AMoS2NR-H-O显著的带隙归因于二硫化钼纳米带边缘原子上的电荷重新分布,特别是边缘钼原子上的电荷。对AMoS2NR-H-O的详细计算表明,导带最小值和价带最大值的总态密度(DOS)中超过70%由钼原子贡献。特别是,边缘钼原子在调节电子结构中起关键作用。此外,我们分别研究了一系列官能化的AMoS2NR-H-X,其中X = S、F、C、N和P。发现X = S、2F、C的AMoS2NR-H-X具有显著的电子带隙,而X = F、N、P的AMoS2NR-H-X是金属性的。我们的研究表明,非金属原子混合钝化可以有效地调节二硫化钼纳米带的电子带隙,并为获得基于二硫化钼的实用纳米电子器件和光伏器件开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验