Suppr超能文献

无髓鞘感觉神经元中动作电位通过背根神经节的传播:一项建模研究。

Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study.

作者信息

Sundt Danielle, Gamper Nikita, Jaffe David B

机构信息

Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas;

Department of Pharmacology, Hebei Medical University, Shijiazhuang, People's Republic of China; and Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom.

出版信息

J Neurophysiol. 2015 Dec;114(6):3140-53. doi: 10.1152/jn.00226.2015. Epub 2015 Sep 2.

Abstract

Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na(+) channels. A model containing only fast voltage-gated Na(+) and delayed-rectifier K(+) channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca(2+)-dependent K(+) current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na(+)-K(+) pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca(2+)-dependent K(+) current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain.

摘要

无髓鞘C纤维是传递疼痛信息的主要感觉神经元类型。动作电位传导受背根神经节(DRG)内感觉神经元轴突的分支(T型接头)调节。了解T型接头的形态和离子通道的局部表达如何影响C纤维信号传导对于理解疼痛信号传导很重要。在本研究中,我们使用生物物理计算机建模来研究DRG内轴突形态和各种膜电导对动作电位传播可靠性的影响。正如预期的那样,计算得出的输入阻抗和传播动作电位的幅度在T型接头处均最低。单个动作电位的传播可靠性对主干轴突的直径和电压门控Na(+)通道的密度高度敏感。仅包含快速电压门控Na(+)和延迟整流K(+)通道的模型能够传导频率高达110 Hz的动作电位序列。在模型中添加缓慢激活的KCNQ通道(即KV7或M通道)会将跟随频率降低到30 Hz。要将跟随频率降低到6 Hz,则需要添加更慢的电导(例如Ca(2+)依赖性K(+)电流)产生的超极化。由于离子积累或Na(+)-K(+)泵产生的超极化导致的驱动力衰减对跟随频率没有影响,但可能与Ca(2+)依赖性K(+)电流产生的电压偏移相互影响动作电位传播的可靠性。这些模拟表明DRG内的特定离子通道可能如何有助于慢性疼痛的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b7/4686302/299c25fd0e64/z9k0151533450001.jpg

相似文献

1
Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study.
J Neurophysiol. 2015 Dec;114(6):3140-53. doi: 10.1152/jn.00226.2015. Epub 2015 Sep 2.
2
C-fiber recovery cycle supernormality depends on ion concentration and ion channel permeability.
Biophys J. 2015 Mar 10;108(5):1057-71. doi: 10.1016/j.bpj.2014.12.034.
3
Differential distribution of voltage-gated channels in myelinated and unmyelinated baroreceptor afferents.
Auton Neurosci. 2012 Dec 24;172(1-2):4-12. doi: 10.1016/j.autneu.2012.10.014. Epub 2012 Nov 10.
5
Α-Dendrotoxin-sensitive Kv1 channels contribute to conduction failure of polymodal nociceptive C-fibers from rat coccygeal nerve.
J Neurophysiol. 2016 Feb 1;115(2):947-57. doi: 10.1152/jn.00786.2014. Epub 2015 Nov 25.
6
Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current.
J Neurosci. 2017 Oct 4;37(40):9705-9714. doi: 10.1523/JNEUROSCI.1703-17.2017. Epub 2017 Sep 6.
7
Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission.
Pain. 2014 Nov;155(11):2306-22. doi: 10.1016/j.pain.2014.08.025. Epub 2014 Aug 26.
8
Effect of clustered ion channels along an unmyelinated axon.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021917. doi: 10.1103/PhysRevE.80.021917. Epub 2009 Aug 17.

引用本文的文献

1
Simulation insights on the compound action potential in multifascicular nerves.
PLoS Comput Biol. 2025 Sep 12;21(9):e1013452. doi: 10.1371/journal.pcbi.1013452. eCollection 2025 Sep.
3
Biophysical characterization of the recording of unmyelinated and myelinated fiber activity with peripheral interfaces.
iScience. 2025 Apr 22;28(5):112495. doi: 10.1016/j.isci.2025.112495. eCollection 2025 May 16.
4
Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications.
Front Bioeng Biotechnol. 2024 Nov 6;12:1476447. doi: 10.3389/fbioe.2024.1476447. eCollection 2024.
5
Reverse-engineered models reveal differential membrane properties of autonomic and cutaneous unmyelinated fibers.
PLoS Comput Biol. 2024 Oct 7;20(10):e1012475. doi: 10.1371/journal.pcbi.1012475. eCollection 2024 Oct.
6
Highly efficient modeling and optimization of neural fiber responses to electrical stimulation.
Nat Commun. 2024 Aug 31;15(1):7597. doi: 10.1038/s41467-024-51709-8.
7
Tonic Stimulation of Dorsal Root Ganglion Results in Progressive Decline in Recruitment of Aα/β-Fibers in Rats.
Neuromodulation. 2024 Dec;27(8):1347-1359. doi: 10.1016/j.neurom.2024.06.498. Epub 2024 Jul 25.
8
NRV: An open framework for in silico evaluation of peripheral nerve electrical stimulation strategies.
PLoS Comput Biol. 2024 Jul 12;20(7):e1011826. doi: 10.1371/journal.pcbi.1011826. eCollection 2024 Jul.
9
Mechanisms of Action of Dorsal Root Ganglion Stimulation.
Int J Mol Sci. 2024 Mar 22;25(7):3591. doi: 10.3390/ijms25073591.

本文引用的文献

1
The dorsal root ganglion in chronic pain and as a target for neuromodulation: a review.
Neuromodulation. 2015 Jan;18(1):24-32; discussion 32. doi: 10.1111/ner.12247. Epub 2014 Oct 29.
3
Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission.
Pain. 2014 Nov;155(11):2306-22. doi: 10.1016/j.pain.2014.08.025. Epub 2014 Aug 26.
4
Activation of peripheral KCNQ channels attenuates inflammatory pain.
Mol Pain. 2014 Feb 21;10:15. doi: 10.1186/1744-8069-10-15.
5
Regulating excitability of peripheral afferents: emerging ion channel targets.
Nat Neurosci. 2014 Feb;17(2):153-63. doi: 10.1038/nn.3602. Epub 2014 Jan 28.
6
Potassium channels in peripheral pain pathways: expression, function and therapeutic potential.
Curr Neuropharmacol. 2013 Dec;11(6):621-40. doi: 10.2174/1570159X113119990042.
7
Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors.
J Neurophysiol. 2014 May;111(9):1721-35. doi: 10.1152/jn.00777.2012. Epub 2013 Dec 26.
8
A systematic review: current and future directions of dorsal root ganglion therapeutics to treat chronic pain.
Pain Med. 2013 Oct;14(10):1477-96. doi: 10.1111/pme.12171. Epub 2013 Jun 26.
10
M-Current Recording from Acute DRG Slices.
Methods Mol Biol. 2013;998:311-20. doi: 10.1007/978-1-62703-351-0_25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验