Suppr超能文献

通过电磁有限元模拟优化的先进神经假体电极设计:创新与应用

Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications.

作者信息

Yang Shu, Yang Siyi, Li Peixuan, Gou Shuchun, Cheng Yuhang, Jia Qinggang, Du Zhanhong

机构信息

Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China.

出版信息

Front Bioeng Biotechnol. 2024 Nov 6;12:1476447. doi: 10.3389/fbioe.2024.1476447. eCollection 2024.

Abstract

Based on electrophysiological activity, neuroprostheses can effectively monitor and control neural activity. Currently, electrophysiological neuroprostheses are widely utilized in treating neurological disorders, particularly in restoring motor, visual, auditory, and somatosensory functions after nervous system injuries. They also help alleviate inflammation, regulate blood pressure, provide analgesia, and treat conditions such as epilepsy and Alzheimer's disease, offering significant research, economic, and social value. Enhancing the targeting capabilities of neuroprostheses remains a key objective for researchers. Modeling and simulation techniques facilitate the theoretical analysis of interactions between neuroprostheses and the nervous system, allowing for quantitative assessments of targeting efficiency. Throughout the development of neuroprostheses, these modeling and simulation methods can save time, materials, and labor costs, thereby accelerating the rapid development of highly targeted neuroprostheses. This article introduces the fundamental principles of neuroprosthesis simulation technology and reviews how various simulation techniques assist in the design and performance enhancement of neuroprostheses. Finally, it discusses the limitations of modeling and simulation and outlines future directions for utilizing these approaches to guide neuroprosthesis design.

摘要

基于电生理活动,神经假体能够有效地监测和控制神经活动。目前,电生理神经假体被广泛应用于治疗神经系统疾病,特别是在恢复神经系统损伤后的运动、视觉、听觉和躯体感觉功能方面。它们还有助于减轻炎症、调节血压、提供镇痛以及治疗癫痫和阿尔茨海默病等病症,具有重要的研究、经济和社会价值。提高神经假体的靶向能力仍然是研究人员的关键目标。建模和仿真技术有助于对神经假体与神经系统之间的相互作用进行理论分析,从而对靶向效率进行定量评估。在神经假体的整个开发过程中,这些建模和仿真方法可以节省时间、材料和劳动力成本,从而加速高靶向性神经假体的快速发展。本文介绍了神经假体仿真技术的基本原理,并综述了各种仿真技术如何辅助神经假体的设计和性能提升。最后,讨论了建模和仿真的局限性,并概述了利用这些方法指导神经假体设计的未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5751/11579925/ab5b3bf4e5e8/fbioe-12-1476447-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验