光动力效率:从分子光化学到细胞死亡

Photodynamic Efficiency: From Molecular Photochemistry to Cell Death.

作者信息

Bacellar Isabel O L, Tsubone Tayana M, Pavani Christiane, Baptista Mauricio S

机构信息

Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.

Programa de Pós Graduação em Biofotônica Aplicada às Ciências da Saúde, Universidade Nove de Julho, São Paulo 01504-001, Brazil.

出版信息

Int J Mol Sci. 2015 Aug 31;16(9):20523-59. doi: 10.3390/ijms160920523.

Abstract

Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.

摘要

光动力疗法(PDT)是一种用于治疗癌症和传染病的临床方法。主要试剂是光敏剂(PS),它被光激发并转化为三重激发态。后一种物质导致单线态氧和自由基的形成,这些物质会氧化生物分子。这篇综述的主要目的是通过利用对光致敏过程中及之后发生的化学和生物学过程的了解,提出实现高效PDT方案的替代方法。我们认为,为了获得特定的细胞死亡机制并使PDT效率最大化,光敏剂应该氧化特定的分子靶点。我们考虑亚细胞定位的作用、光敏剂的光化学和光物理如何根据其纳米环境而变化,以及所有这些如何触发特定的细胞死亡机制。我们提出,为了开发能使PDT效率取得突破性提高的光敏剂,研究人员应首先考虑组织和细胞内定位,而不是试图在体外测试中最大化单线态氧量子产率。除此之外,我们还指出了该领域仍然存在的许多未解决的问题和挑战,希望鼓励未来的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0973/4613217/18f63ebf42f0/ijms-16-20523-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索