Rajagopal Vijay, Bass Gregory, Walker Cameron G, Crossman David J, Petzer Amorita, Hickey Anthony, Siekmann Ivo, Hoshijima Masahiko, Ellisman Mark H, Crampin Edmund J, Soeller Christian
Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia.
Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia.
PLoS Comput Biol. 2015 Sep 3;11(9):e1004417. doi: 10.1371/journal.pcbi.1004417. eCollection 2015 Sep.
Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 μM; F/F0≈5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes.
细胞内钙离子浓度([Ca2+]i)的时空动态调节心肌细胞的收缩功能。测量[Ca2+]i通量是研究正常心脏功能和心脏病中钙依赖性病因基础机制的核心。然而,目前的成像技术在检测[Ca2+]i变化的空间分辨率方面存在局限性。我们使用空间点过程统计技术开发了一种新方法,用于模拟兰尼碱受体(RyR)簇的空间分布,RyR簇是收缩性Ca2+释放的主要介质,其分布于由紧密排列的线粒体和肌原纤维组成的生理现实细胞景观上。我们应用此方法将RyR簇的共聚焦尺度(约200 nm)数据与肌原纤维和线粒体的三维电子显微镜数据(约30 nm)进行计算合并,这些数据均采集自成年大鼠左心室心肌细胞。使用这种混合尺度空间模型,我们模拟了瞬变上升阶段(起始后前30毫秒)[Ca2+]i的反应扩散。在30毫秒时,模拟的[Ca2+]i瞬变平均峰值和模拟的荧光强度信号F/F0达到与文献中发现的值相似的值([Ca2+]i≈1 μM;F/F0≈5.5)。然而,我们的模型预测[Ca2+]i的变化在0.3至12.7 μM之间(比静息值0.1 μM高出约3至100倍),相应的F/F0信号范围为3至9.5。我们在本研究中证明:(i)[Ca2+]i瞬变的异质性不仅源于线粒体的异质分布和聚集;(ii)还源于RyR簇的异质局部密度。此外,我们表明:(iii)这些由结构引起的[Ca2+]i异质性可以出现在线扫描数据中。最后,使用我们生成RyR簇分布的独特方法,我们证明了[Ca2+]i瞬变对大鼠和人类心肌细胞之间测量的RyR簇分布差异具有稳健性。