Hinaut Xavier, Lance Florian, Droin Colas, Petit Maxime, Pointeau Gregoire, Dominey Peter Ford
CNPS, UMR CNRS 8195, University Paris-Sud, Orsay, France.
INSERM Stem Cell and Brain Research Institute, Human and Robot Cognitive Systems, 18 Ave Lepine, 69675 Bron Cedex, France.
Brain Lang. 2015 Nov;150:54-68. doi: 10.1016/j.bandl.2015.08.002. Epub 2015 Sep 1.
Language production requires selection of the appropriate sentence structure to accommodate the communication goal of the speaker - the transmission of a particular meaning. Here we consider event meanings, in terms of predicates and thematic roles, and we address the problem that a given event can be described from multiple perspectives, which poses a problem of response selection. We present a model of response selection in sentence production that is inspired by the primate corticostriatal system. The model is implemented in the context of reservoir computing where the reservoir - a recurrent neural network with fixed connections - corresponds to cortex, and the readout corresponds to the striatum. We demonstrate robust learning, and generalization properties of the model, and demonstrate its cross linguistic capabilities in English and Japanese. The results contribute to the argument that the corticostriatal system plays a role in response selection in language production, and to the stance that reservoir computing is a valid potential model of corticostriatal processing.
语言生成需要选择合适的句子结构,以适应说话者的交流目标——传递特定的意义。在这里,我们从谓词和主题角色的角度考虑事件意义,并探讨一个给定事件可以从多个角度进行描述这一问题,这就带来了反应选择的问题。我们提出了一个句子生成中反应选择的模型,该模型受到灵长类动物皮质纹状体系统的启发。该模型是在储层计算的背景下实现的,其中储层——一个具有固定连接的循环神经网络——对应于皮层,而读出部分对应于纹状体。我们展示了该模型强大的学习能力和泛化特性,并展示了其在英语和日语中的跨语言能力。这些结果支持了皮质纹状体系统在语言生成的反应选择中起作用的观点,以及储层计算是皮质纹状体处理的有效潜在模型的立场。