Suppr超能文献

建立大象早期预警和监测系统的基础。

Establishing the fundamentals for an elephant early warning and monitoring system.

作者信息

Zeppelzauer Matthias, Stoeger Angela S

机构信息

Media Computing Group, St. Pölten University of Applied Sciences, Matthias-Corvinus Strasse 15, 3100, St. Pölten, Austria.

Department of Cognitive Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.

出版信息

BMC Res Notes. 2015 Sep 4;8:409. doi: 10.1186/s13104-015-1370-y.

Abstract

BACKGROUND

The decline of habitat for elephants due to expanding human activity is a serious conservation problem. This has continuously escalated the human-elephant conflict in Africa and Asia. Elephants make extensive use of powerful infrasonic calls (rumbles) that travel distances of up to several kilometers. This makes elephants well-suited for acoustic monitoring because it enables detecting elephants even if they are out of sight. In sight, their distinct visual appearance makes them a good candidate for visual monitoring. We provide an integrated overview of our interdisciplinary project that established the scientific fundamentals for a future early warning and monitoring system for humans who regularly experience serious conflict with elephants. We first draw the big picture of an early warning and monitoring system, then review the developed solutions for automatic acoustic and visual detection, discuss specific challenges and present open future work necessary to build a robust and reliable early warning and monitoring system that is able to operate in situ.

FINDINGS

We present a method for the automated detection of elephant rumbles that is robust to the diverse noise sources present in situ. We evaluated the method on an extensive set of audio data recorded under natural field conditions. Results show that the proposed method outperforms existing approaches and accurately detects elephant rumbles. Our visual detection method shows that tracking elephants in wildlife videos (of different sizes and postures) is feasible and particularly robust at near distances.

DISCUSSION

From our project results we draw a number of conclusions that are discussed and summarized. We clearly identified the most critical challenges and necessary improvements of the proposed detection methods and conclude that our findings have the potential to form the basis for a future automated early warning system for elephants. We discuss challenges that need to be solved and summarize open topics in the context of a future early warning and monitoring system. We conclude that a long-term evaluation of the presented methods in situ using real-time prototypes is the most important next step to transfer the developed methods into practical implementation.

摘要

背景

由于人类活动的扩张,大象栖息地不断减少,这是一个严重的保护问题。这不断加剧了非洲和亚洲的人象冲突。大象广泛使用强大的次声呼叫(隆隆声),其传播距离可达数公里。这使得大象非常适合进行声学监测,因为即使大象不在视线范围内也能检测到它们。在视线范围内,它们独特的视觉外观使它们成为视觉监测的理想对象。我们提供了一个跨学科项目的综合概述,该项目为未来针对经常与大象发生严重冲突的人类建立早期预警和监测系统奠定了科学基础。我们首先勾勒出早期预警和监测系统的整体框架,然后回顾已开发的自动声学和视觉检测解决方案,讨论具体挑战,并介绍构建一个能够在现场运行的强大而可靠的早期预警和监测系统所需的未来开放性工作。

研究结果

我们提出了一种自动检测大象隆隆声的方法,该方法对现场存在的各种噪声源具有鲁棒性。我们在自然野外条件下记录的大量音频数据上对该方法进行了评估。结果表明,所提出的方法优于现有方法,能够准确检测到大象的隆隆声。我们的视觉检测方法表明,在野生动物视频(不同大小和姿势)中跟踪大象是可行的,并且在近距离时特别鲁棒。

讨论

从我们的项目结果中,我们得出了一些结论并进行了讨论和总结。我们明确确定了所提出的检测方法最关键的挑战和必要的改进,并得出结论,我们的研究结果有可能为未来的大象自动早期预警系统奠定基础。我们讨论了需要解决的挑战,并在未来早期预警和监测系统的背景下总结了开放性话题。我们得出结论,使用实时原型对所提出的方法进行长期现场评估是将已开发的方法转化为实际应用的最重要的下一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd54/4558827/b1c322d582ee/13104_2015_1370_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验