Sultana Irin, Rahman Md Mokhlesur, Ramireddy Thrinathreddy, Sharma Neeraj, Poddar Debasis, Khalid Abbas, Zhang Hongzhou, Chen Ying, Glushenkov Alexey M
Institute for Frontier Materials, Deakin University , Waurn Ponds, Victoria 3216, Australia.
School of Chemistry, University of New South Wales , Sydney, New South Wales 2052, Australia.
ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20736-44. doi: 10.1021/acsami.5b05658. Epub 2015 Sep 14.
A range of high-capacity Li-ion anode materials (conversion reactions with lithium) suffer from poor cycling stability and limited high-rate performance. These issues can be addressed through hybridization of multiple nanostructured components in an electrode. Using a Co3O4-Fe2O3/C system as an example, we demonstrate that the cycling stability and rate performance are improved in a hybrid electrode. The hybrid Co3O4-Fe2O3/C electrode exhibits long-term cycling stability (300 cycles) at a moderate current rate with a retained capacity of approximately 700 mAh g(-1). The reversible capacity of the Co3O4-Fe2O3/C electrode is still about 400 mAh g(-1) (above the theoretical capacity of graphite) at a high current rate of ca. 3 A g(-1), whereas Co3O4-Fe2O3, Fe2O3/C, and Co3O4/C electrodes (used as controls) are unable to operate as effectively under identical testing conditions. To understand the structure-function relationship in the hybrid electrode and the reasons for the enhanced cycling stability, we employed a combination of ex situ and in situ techniques. Our results indicate that the improvements in the hybrid electrode originate from the combination of sequential electrochemical activity of the transition metal oxides with an enhanced electronic conductivity provided by percolating carbon chains.
一系列高容量锂离子负极材料(与锂发生转换反应)存在循环稳定性差和高倍率性能受限的问题。这些问题可通过在电极中混合多种纳米结构组分来解决。以Co3O4-Fe2O3/C体系为例,我们证明了混合电极的循环稳定性和倍率性能得到了改善。混合Co3O4-Fe2O3/C电极在中等电流倍率下表现出长期循环稳定性(300次循环),保留容量约为700 mAh g(-1)。在约3 A g(-1)的高电流倍率下,Co3O4-Fe2O3/C电极的可逆容量仍约为400 mAh g(-1)(高于石墨的理论容量),而Co3O4-Fe2O3、Fe2O3/C和Co3O4/C电极(用作对照)在相同测试条件下无法有效运行。为了理解混合电极中的结构-功能关系以及循环稳定性增强的原因,我们采用了非原位和原位技术相结合的方法。我们的结果表明,混合电极的性能提升源于过渡金属氧化物的顺序电化学活性与由渗流碳链提供的增强电子导电性的结合。