Suppr超能文献

metaModules 鉴定了微生物组相关疾病中的关键功能子网络。

metaModules identifies key functional subnetworks in microbiome-related disease.

机构信息

Centre for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, Amsterdam, The Netherlands, Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands.

Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.

出版信息

Bioinformatics. 2016 Jun 1;32(11):1678-85. doi: 10.1093/bioinformatics/btv526. Epub 2015 Sep 5.

Abstract

MOTIVATION

The human microbiome plays a key role in health and disease. Thanks to comparative metatranscriptomics, the cellular functions that are deregulated by the microbiome in disease can now be computationally explored. Unlike gene-centric approaches, pathway-based methods provide a systemic view of such functions; however, they typically consider each pathway in isolation and in its entirety. They can therefore overlook the key differences that (i) span multiple pathways, (ii) contain bidirectionally deregulated components, (iii) are confined to a pathway region. To capture these properties, computational methods that reach beyond the scope of predefined pathways are needed.

RESULTS

By integrating an existing module discovery algorithm into comparative metatranscriptomic analysis, we developed metaModules, a novel computational framework for automated identification of the key functional differences between health- and disease-associated communities. Using this framework, we recovered significantly deregulated subnetworks that were indeed recognized to be involved in two well-studied, microbiome-mediated oral diseases, such as butanoate production in periodontal disease and metabolism of sugar alcohols in dental caries. More importantly, our results indicate that our method can be used for hypothesis generation based on automated discovery of novel, disease-related functional subnetworks, which would otherwise require extensive and laborious manual assessment.

AVAILABILITY AND IMPLEMENTATION

metaModules is available at https://bitbucket.org/alimay/metamodules/

CONTACT

a.may@vu.nl or s.abeln@vu.nl

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

人类微生物组在健康和疾病中起着关键作用。由于比较宏转录组学,现在可以通过计算方法探索微生物组在疾病中失调的细胞功能。与基于基因的方法不同,基于途径的方法为这些功能提供了系统的观点;然而,它们通常单独考虑每个途径及其整体。因此,它们可能会忽略关键差异:(i)跨越多个途径,(ii)包含双向失调的成分,(iii)局限于途径区域。为了捕捉这些特性,需要超越预定义途径范围的计算方法。

结果

通过将现有的模块发现算法集成到比较宏转录组学分析中,我们开发了 metaModules,这是一种用于自动识别健康相关和疾病相关群落之间关键功能差异的新型计算框架。使用这个框架,我们恢复了显著失调的子网络,这些子网络确实被认为与两种研究得很好的微生物组介导的口腔疾病有关,例如牙周病中的丁酸产生和龋齿中的糖醇代谢。更重要的是,我们的结果表明,我们的方法可用于基于自动发现新的、与疾病相关的功能子网络来生成假说,否则这需要广泛而费力的手动评估。

可用性和实现

metaModules 可在 https://bitbucket.org/alimay/metamodules/ 获得。

联系人

a.may@vu.nls.abeln@vu.nl

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验