Suppr超能文献

在多流体代谢相关性的层次图中基于表型驱动识别模块。

Phenotype-driven identification of modules in a hierarchical map of multifluid metabolic correlations.

作者信息

Do Kieu Trinh, Pietzner Maik, Rasp Livia Dahlia, Friedrich Nele, Nauck Matthias, Kocher Thomas, Suhre Karsten, Mook-Kanamori Dennis O, Kastenmüller Gabi, Krumsiek Jan

机构信息

Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.

Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.

出版信息

NPJ Syst Biol Appl. 2017 Sep 21;3:28. doi: 10.1038/s41540-017-0029-9. eCollection 2017.

Abstract

The identification of phenotype-driven network modules in complex, multifluid metabolomics data poses a considerable challenge for statistical analysis and result interpretation. This is the case for phenotypes with only few associations ('sparse' effects), but, in particular, for phenotypes with a large number of metabolite associations ('dense' effects). Herein, we postulate that examining the data at different layers of resolution, from metabolites to pathways, will facilitate the interpretation of modules for both the sparse and the dense cases. We propose an approach for the phenotype-driven identification of modules on multifluid networks based on untargeted metabolomics data of plasma, urine, and saliva samples from the German Study of Health in Pomerania (SHIP-TREND) study. We generated a hierarchical, multifluid map of metabolism covering both metabolite and pathway associations using Gaussian graphical models. First, this map facilitates a fundamental understanding of metabolism within and across fluids for our study, and can serve as a valuable and downloadable resource. Second, based on this map, we then present an algorithm to identify regulated modules that associate with factors such as gender and insulin-like growth factor I (IGF-I) as examples of traits with dense and sparse associations, respectively. We found IGF-I to associate at the rather fine-grained metabolite level, while gender shows well-interpretable associations at pathway level. Our results confirm that a holistic and interpretable view of metabolic changes associated with a phenotype can only be obtained if different layers of metabolic resolution from multiple body fluids are considered.

摘要

在复杂的多流体代谢组学数据中识别由表型驱动的网络模块,对统计分析和结果解释构成了相当大的挑战。对于只有少数关联(“稀疏”效应)的表型来说是这样,尤其是对于具有大量代谢物关联(“密集”效应)的表型更是如此。在此,我们假定,从代谢物到代谢途径,在不同分辨率层次上检查数据,将有助于解释稀疏和密集情况下的模块。我们基于德国梅克伦堡-前波美拉尼亚州健康研究(SHIP-TREND)中血浆、尿液和唾液样本的非靶向代谢组学数据,提出了一种在多流体网络上进行由表型驱动的模块识别方法。我们使用高斯图形模型生成了一个涵盖代谢物和代谢途径关联的分层多流体代谢图谱。首先,这一图谱有助于我们从根本上理解不同流体内部和之间的代谢情况,并且可以作为一个有价值且可下载的资源。其次,基于此图谱,我们提出一种算法,以识别分别与性别和胰岛素样生长因子I(IGF-I)等因素相关的调控模块,性别和IGF-I分别作为具有密集和稀疏关联特征的示例。我们发现IGF-I在相当精细的代谢物水平上存在关联,而性别在代谢途径水平上呈现出易于解释的关联。我们的结果证实,只有考虑来自多种体液的不同代谢分辨率层次,才能获得与表型相关的代谢变化的整体且可解释的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验