Suppr超能文献

Structural characterization of phospholamban in cardiac sarcoplasmic reticulum membranes by cross-linking.

作者信息

Young E F, McKee M J, Ferguson D G, Kranias E G

机构信息

Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH 45267-0575.

出版信息

Membr Biochem. 1989;8(2):95-106. doi: 10.3109/09687688909082263.

Abstract

The native form of phospholamban in cardiac sarcoplasmic reticulum membranes was investigated using photosensitive heterobifunctional cross-linkers, both cleavable and noncleavable, and common protein modifiers. The photosensitive heterobifunctional cleavable cross-linker ethyl 4-azidophenyl-1, 4-dithiobutyrimidate was used in native SR vesicles and it cross-linked phospholamban into an apparent phospholamban-phospholamban dimer and into an approximately 110,000-Da species. The phospholamban dimer migrated at approximately 12,000 Da on sodium dodecyl sulfate-polyacrylamide gels, and upon cleavage of the cross-linker before electrophoresis the dimer disappeared. The approximately 110,000-Da cross-linked species was not affected by boiling in sodium dodecyl sulfate prior to electrophoresis. This cross-linked form of phospholamban migrated approximately 5500 Da above the Ca2(+)-ATPase, which was visualized using fluorescein 5'-isothiocynate, a fluorescent marker that binds specifically to the Ca2(+)-ATPase. p-Azidophenacyl bromide, iodoacetic acid, and N-ethylmaleimide, all of which react with sulfhydryl groups, were also employed to further characterize phospholamban in native sarcoplasmic reticulum membranes. Cross-linking with p-azidophenacyl bromide resulted in only monomeric and dimeric forms of phospholamban as observed on sodium dodecyl sulfate-polyacrylamide gels. Iodoacetic acid and N-ethylmalemide were found to be effective in disrupting the pentameric form of phospholamban only when reacted with sodium dodecyl sulfate solubilized sarcoplasmic reticulum. In view of these findings, the amino acid sequence of phospholamban was examined for possible protein-protein interaction sites. Analysis by hydropathic profiling and secondary structure prediction suggests that the region of amino acids 1-14 may form an amphipathic alpha helix and the hydrophobic surface on one of its sites could interact with the reciprocal hydrophobic surface of another protein, such as the Ca2(+)-ATPase.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验