Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
Water Res. 2015 Nov 15;85:295-303. doi: 10.1016/j.watres.2015.08.046. Epub 2015 Aug 29.
The presence of a high level of dissolved methane (e.g., 20-26 g m(-3)) in the anaerobic sludge digestion liquor represents a major challenge to the treatment of this stream, as its emission to the atmosphere contributes significantly to the carbon footprint of wastewater treatment. Here we propose a new approach to simultaneous ammonium and dissolved methane removal from the anaerobic digestion liquor through integrating partial nitritation-Anammox and denitrifying anaerobic methane oxidation (DAMO) processes in a single-stage membrane biofilm reactor (MBfR). In such an MBfR, the anaerobic digestion liquor is provided in the bulk liquid, while oxygen is supplied through gas-permeable membranes to avoid dissolved methane stripping. A previously developed model with appropriate extensions was applied to assess the system performance under different operational conditions and the corresponding microbial interactions. Both influent surface loading (or hydraulic retention time) and oxygen surface loading are found to significantly influence the total nitrogen (TN) and dissolved methane removal, which jointly determine the overall system performance. The counter diffusion and concentration gradients of substrates cause microbial stratification in the biofilm, where ammonia-oxidizing bacteria (AOB) attach close to the membrane surface (biofilm base) where oxygen and ammonium are available, while Anammox and DAMO microorganisms jointly grow in the biofilm layer close to the bulk liquid where methane, ammonium, and nitrite are available with the latter produced by AOB. These results provide first insights and useful information for the design and operation of this new technology for simultaneous ammonium and dissolved methane removal in its potential future applications.
在厌氧污泥消化液中存在高浓度溶解甲烷(例如 20-26 g m(-3))),这对该废水的处理构成了重大挑战,因为其向大气中的排放对废水处理的碳足迹有重大影响。在这里,我们提出了一种新的方法,通过在单级膜生物膜反应器(MBfR)中整合部分硝化-厌氧氨氧化和反硝化厌氧甲烷氧化(DAMO)过程,同时从厌氧消化液中去除氨氮和溶解甲烷。在这样的 MBfR 中,将厌氧消化液提供在主体液体中,同时通过透气膜供应氧气以避免溶解甲烷汽提。应用了先前开发的具有适当扩展的模型来评估不同操作条件下的系统性能和相应的微生物相互作用。进水表面负荷(或水力停留时间)和氧气表面负荷都对总氮(TN)和溶解甲烷去除有显著影响,这共同决定了整个系统的性能。基质的反扩散和浓度梯度导致生物膜中的微生物分层,氨氧化细菌(AOB)附着在有氧气和氨氮的膜表面(生物膜底部),而厌氧氨氧化菌和 DAMO 微生物则共同生长在靠近主体液体的生物膜层中,其中甲烷、氨氮和亚硝酸盐都可用,而后者由 AOB 产生。这些结果为该新技术在潜在未来应用中同时去除氨氮和溶解甲烷的设计和操作提供了初步的见解和有用的信息。