Tvedebrink Torben, Eriksen Poul Svante, Morling Niels
Department of Mathematical Sciences, Aalborg University, Denmark.
Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Theor Popul Biol. 2015 Nov;105:24-32. doi: 10.1016/j.tpb.2015.08.004. Epub 2015 Sep 4.
In this paper, we discuss the construction of a multivariate generalisation of the Dirichlet-multinomial distribution. An example from forensic genetics in the statistical analysis of DNA mixtures motivates the study of this multivariate extension. In forensic genetics, adjustment of the match probabilities due to remote ancestry in the population is often done using the so-called θ-correction. This correction increases the probability of observing multiple copies of rare alleles in a subpopulation and thereby reduces the weight of the evidence for rare genotypes. A recent publication by Cowell et al. (2015) showed elegantly how to use Bayesian networks for efficient computations of likelihood ratios in a forensic genetic context. However, their underlying population genetic model assumed independence of alleles, which is not realistic in real populations. We demonstrate how the so-called θ-correction can be incorporated in Bayesian networks to make efficient computations by modifying the Markov structure of Cowell et al. (2015). By numerical examples, we show how the θ-correction incorporated in the multivariate Dirichlet-multinomial distribution affects the weight of evidence.
在本文中,我们讨论狄利克雷多项分布的多元推广的构建。法医遗传学中DNA混合物统计分析的一个例子推动了对这种多元扩展的研究。在法医遗传学中,由于人群中遥远祖先的原因对匹配概率进行调整通常使用所谓的θ校正。这种校正增加了在亚群体中观察到稀有等位基因多个拷贝的概率,从而降低了稀有基因型证据的权重。考威尔等人(2015年)最近发表的一篇文章巧妙地展示了如何在法医遗传学背景下使用贝叶斯网络进行似然比的有效计算。然而,他们潜在的群体遗传模型假设等位基因是独立的,这在实际群体中并不现实。我们展示了如何通过修改考威尔等人(2015年)的马尔可夫结构,将所谓的θ校正纳入贝叶斯网络以进行有效计算。通过数值例子,我们展示了纳入多元狄利克雷多项分布的θ校正如何影响证据的权重。