Carmichael Casey Y, Wainford Richard D
The Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine Boston, MA, USA.
Front Physiol. 2015 Aug 19;6:233. doi: 10.3389/fphys.2015.00233. eCollection 2015.
To counter the development of salt-sensitive hypertension, multiple brain G-protein-coupled receptor (GPCR) systems are activated to facilitate sympathoinhibition, sodium homeostasis, and normotension. Currently there is a paucity of knowledge regarding the role of down-stream GPCR-activated Gα-subunit proteins in these critically important physiological regulatory responses required for long-term blood pressure regulation. We have determined that brain Gαi2-proteins mediate natriuretic and sympathoinhibitory responses produced by acute pharmacological (exogenous central nociceptin/orphanin FQ receptor (NOP) and α2-adrenoceptor activation) and physiological challenges to sodium homeostasis (intravenous volume expansion and 1 M sodium load) in conscious Sprague-Dawley rats. We have demonstrated that in salt-resistant rat phenotypes, high dietary salt intake evokes site-specific up-regulation of hypothalamic paraventricular nucleus (PVN) Gαi2-proteins. Further, we established that PVN Gαi2 protein up-regulation prevents the development of renal nerve-dependent sympathetically mediated salt-sensitive hypertension in Sprague-Dawley and Dahl salt-resistant rats. Additionally, failure to up-regulate PVN Gαi2 proteins during high salt-intake contributes to the pathophysiology of Dahl salt-sensitive (DSS) hypertension. Collectively, our data demonstrate that brain, and likely PVN specific, Gαi2 protein pathways represent a central molecular pathway mediating sympathoinhibitory renal-nerve dependent responses evoked to maintain sodium homeostasis and a salt-resistant phenotype. Further, impairment of this endogenous "anti-hypertensive" mechanism contributes to the pathophysiology of salt-sensitive hypertension.
为应对盐敏感性高血压的发展,多个脑G蛋白偶联受体(GPCR)系统被激活,以促进交感神经抑制、钠稳态和血压正常化。目前,关于下游GPCR激活的Gα亚基蛋白在长期血压调节所需的这些至关重要的生理调节反应中的作用,我们知之甚少。我们已经确定,脑Gαi2蛋白介导了清醒的Sprague-Dawley大鼠在急性药理学刺激(外源性中枢孤啡肽/孤啡肽FQ受体(NOP)和α2肾上腺素能受体激活)以及钠稳态的生理挑战(静脉容量扩张和1 M钠负荷)下产生的利钠和交感神经抑制反应。我们已经证明,在抗盐大鼠表型中,高盐饮食摄入会引起下丘脑室旁核(PVN)Gαi2蛋白的位点特异性上调。此外,我们证实PVN Gαi2蛋白上调可预防Sprague-Dawley和Dahl抗盐大鼠中肾神经依赖性交感神经介导的盐敏感性高血压的发展。此外,在高盐摄入期间未能上调PVN Gαi2蛋白会导致Dahl盐敏感性(DSS)高血压的病理生理过程。总的来说,我们的数据表明,脑,可能特别是PVN特异性的Gαi2蛋白途径代表了一条核心分子途径,介导交感神经抑制性肾神经依赖性反应,以维持钠稳态和抗盐表型。此外,这种内源性“抗高血压”机制的损害会导致盐敏感性高血压的病理生理过程。