Chong Song-Ho, Hong Jooyeon, Lim Sulgi, Cho Sunhee, Lee Jinkeong, Ham Sihyun
Department of Chemistry, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 140-742, Korea.
Sci Rep. 2015 Sep 8;5:13631. doi: 10.1038/srep13631.
β-2-microglobulin (β2m) self-aggregates to form amyloid fibril in renal patients taking long-term dialysis treatment. Despite the extensive structural and mutation studies carried out so far, the molecular details on the factors that dictate amyloidogenic potential of β2m remain elusive. Here we report molecular dynamics simulations followed by the solvation thermodynamic analyses on the wild-type β2m and D76N, D59P, and W60C mutants at the native (N) and so-called aggregation-prone intermediate (IT) states, which are distinguished by the native cis- and non-native trans-Pro32 backbone conformations. Three major structural and thermodynamic characteristics of the IT-state relative to the N-state in β2m protein are detected that contribute to the increased amyloidogenic potential: (i) the disruption of the edge D-strand, (ii) the increased solvent-exposed hydrophobic interface, and (iii) the increased solvation free energy (less affinity toward solvent water). Mutation effects on these three factors are shown to exhibit a good correlation with the experimentally observed distinct amyloidogenic propensity of the D76N (+), D59P (+), and W60C (-) mutants (+/- for enhanced/decreased). Our analyses thus identify the structural and thermodynamic characteristics of the amyloidogenic intermediates, which will serve to uncover molecular mechanisms and driving forces in β2m amyloid fibril formation.
在接受长期透析治疗的肾病患者中,β2微球蛋白(β2m)会自我聚集形成淀粉样纤维。尽管迄今为止已经进行了广泛的结构和突变研究,但决定β2m淀粉样生成潜力的因素的分子细节仍然难以捉摸。在这里,我们报告了对野生型β2m以及D76N、D59P和W60C突变体在天然(N)状态和所谓的易于聚集的中间(IT)状态下进行分子动力学模拟,随后进行溶剂化热力学分析,这两种状态以天然顺式和非天然反式Pro32主链构象区分。检测到β2m蛋白中IT状态相对于N状态的三个主要结构和热力学特征,这些特征导致淀粉样生成潜力增加:(i)边缘D链的破坏,(ii)溶剂暴露的疏水界面增加,以及(iii)溶剂化自由能增加(对溶剂水的亲和力降低)。结果表明,对这三个因素的突变效应与实验观察到的D76N(+)、D59P(+)和W60C(-)突变体(+/-表示增强/降低)不同的淀粉样生成倾向具有良好的相关性。因此,我们的分析确定了淀粉样生成中间体的结构和热力学特征,这将有助于揭示β2m淀粉样纤维形成的分子机制和驱动力。