Huang Chongyuan, Wang Cong, Shang Wei, Yang Nan, Tang Yulong, Xu Jianqiu
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.
Sci Rep. 2015 Sep 8;5:13680. doi: 10.1038/srep13680.
While the recent discovered new mode-locking mechanism--dissipative soliton--has successfully improved the pulse energy of 1 μm and 1.5 μm fiber lasers to tens of nanojoules, it is still hard to scale the pulse energy at 2 μm due to the anomalous dispersion of the gain fiber. After analyzing the intracavity pulse dynamics, we propose that the gain fiber should be condensed to short lengths in order to generate high energy pulse at 2 μm. Numerical simulation predicts the existence of stable 2 μm dissipative soliton solutions with pulse energy over 10 nJ, comparable to that achieved in the 1 μm and 1.5 μm regimes. Experimental operation confirms the validity of the proposal. These results will advance our understanding of mode-locked fiber lasers at different wavelengths and lay an important step in achieving high energy ultrafast laser pulses from anomalous dispersion gain media.
尽管最近发现的新型锁模机制——耗散孤子——已成功将1μm和1.5μm光纤激光器的脉冲能量提高到数十纳焦,但由于增益光纤的反常色散,在2μm波长下仍难以扩展脉冲能量。在分析腔内脉冲动力学后,我们提出应将增益光纤压缩至较短长度,以便在2μm波长下产生高能量脉冲。数值模拟预测存在脉冲能量超过10nJ的稳定2μm耗散孤子解,这与在1μm和1.5μm波段所达到的水平相当。实验操作证实了该提议的有效性。这些结果将增进我们对不同波长锁模光纤激光器的理解,并为从反常色散增益介质中获得高能量超快激光脉冲迈出重要一步。