Suppr超能文献

利用聚合物纳米粒子中的可逆相互作用生成中空金属-有机纳米粒子。

Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal-Organic Nanoparticles.

机构信息

Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA).

College of Materials, Xiamen University, Xiamen, 361005 (P.R. China).

出版信息

Angew Chem Int Ed Engl. 2015 Oct 26;54(44):12991-5. doi: 10.1002/anie.201505242. Epub 2015 Sep 9.

Abstract

The use of reversible linkers in polymers has been of interest mainly for biomedical applications. Herein, we present a novel strategy to utilize reversible interactions in polymeric nanoparticles to generate hollow metal-organic nanoparticles (MOPs). These hollow MOPs are synthesized from self-assembled polymeric nanoparticles using a simple metal-comonomer exchange process in a single step. The control over the size of the polymer precursor particles translates into a straightforward opportunity for controlling MOP sizes. The shell thickness of the MOPs could be easily tuned by the concentration of metal ions in solution. The underlying mechanism for the formation of these hollow MOPs has been proposed. Evidence for the generality of the method is provided by its application to a variety of metal ions with different coordination geometries.

摘要

在聚合物中使用可逆连接体主要引起了生物医学应用的兴趣。在此,我们提出了一种新策略,即在聚合物纳米粒子中利用可逆相互作用来生成中空金属有机纳米粒子(MOPs)。这些中空 MOPs 是通过在一步中使用简单的金属-共聚单体交换过程从自组装聚合物纳米粒子合成的。对聚合物前体颗粒尺寸的控制转化为控制 MOP 尺寸的直接机会。MOP 的壳层厚度可以通过溶液中金属离子的浓度轻松调节。已经提出了形成这些中空 MOP 的基本机制。该方法的通用性已通过其在各种具有不同配位几何形状的金属离子中的应用得到证明。

相似文献

1
Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal-Organic Nanoparticles.
Angew Chem Int Ed Engl. 2015 Oct 26;54(44):12991-5. doi: 10.1002/anie.201505242. Epub 2015 Sep 9.
2
Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.
Acc Chem Res. 2014 Jan 21;47(1):157-67. doi: 10.1021/ar4001026. Epub 2013 Aug 20.
3
Well-defined metal-organic framework hollow nanocages.
Angew Chem Int Ed Engl. 2014 Jan 7;53(2):429-33. doi: 10.1002/anie.201308589. Epub 2013 Nov 28.
4
In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.
Acc Chem Res. 2016 Sep 20;49(9):1671-80. doi: 10.1021/acs.accounts.6b00201. Epub 2016 Aug 23.
5
Metal-Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis.
J Am Chem Soc. 2016 May 25;138(20):6525-31. doi: 10.1021/jacs.6b01758. Epub 2016 May 11.
7
Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.
Colloids Surf B Biointerfaces. 2010 Jul 1;78(2):193-9. doi: 10.1016/j.colsurfb.2010.02.031. Epub 2010 Mar 6.
8
Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):79-116. doi: 10.1016/j.cis.2004.07.005.
9
Self-Healing and Shape Memory Hypercrosslinked Metal-Organic Polyhedra Polymers via Coordination Post-Assembly.
Angew Chem Int Ed Engl. 2022 Oct 24;61(43):e202212253. doi: 10.1002/anie.202212253. Epub 2022 Sep 29.
10
Thermally reversible self-assembly of nanoparticles via polymer crystallization.
Macromol Rapid Commun. 2014 Dec;35(23):2012-7. doi: 10.1002/marc.201400457. Epub 2014 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验