Suppr超能文献

基于GARCH-EVT- Copula模型的天然气投资组合风险估计

Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model.

作者信息

Tang Jiechen, Zhou Chao, Yuan Xinyu, Sriboonchitta Songsak

机构信息

Faculty of Economics, Chiang Mai University, 2397 Suthep, A. Mueang, Chiang Mai 200060, Thailand.

School of Economics, Northwest Normal University, Lanzhou, China ; The People's Bank of China, Zhang Ye City Branch, Zhangye, China.

出版信息

ScientificWorldJournal. 2015;2015:125958. doi: 10.1155/2015/125958. Epub 2015 Aug 13.

Abstract

This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.

摘要

本文着重于运用GARCH-EVT- Copula模型估计天然气枢纽交易中心(TTF)天然气投资组合的风险。我们首先使用单变量ARMA-GARCH模型对每个天然气收益序列进行建模。其次,将极值分布(EVT)拟合到残差尾部以对边际残差分布进行建模。第三,采用多元高斯Copula和学生t-Copula来描述天然气投资组合风险相依结构。最后,我们模拟N个投资组合并估计风险价值(VaR)和条件风险价值(CVaR)。我们的实证结果表明,对于五种天然气的等权重投资组合,学生t-Copula得出的VaR和CVaR值大于高斯Copula得出的值。此外,在最小化投资组合风险时,发现多元高斯Copula和学生t-Copula以及不同置信水平下的最优天然气投资组合权重相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac6/4550757/0bdb5e135d10/TSWJ2015-125958.001.jpg

相似文献

1
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model.
ScientificWorldJournal. 2015;2015:125958. doi: 10.1155/2015/125958. Epub 2015 Aug 13.
2
Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model.
PLoS One. 2018 Jun 22;13(6):e0198753. doi: 10.1371/journal.pone.0198753. eCollection 2018.
3
Modeling risk dependence and portfolio VaR forecast through vine copula for cryptocurrencies.
PLoS One. 2020 Dec 23;15(12):e0242102. doi: 10.1371/journal.pone.0242102. eCollection 2020.
4
Portfolio value-at-risk estimation for spot chartering decisions under changing trade patterns: A copula approach.
Risk Anal. 2023 Jun;43(6):1278-1292. doi: 10.1111/risa.13989. Epub 2022 Jul 5.
5
Comparison of Value at Risk (VaR) Multivariate Forecast Models.
Comput Econ. 2022 Nov 10:1-36. doi: 10.1007/s10614-022-10330-x.
6
Risk analysis in the brazilian stock market: copula-APARCH modeling for value-at-risk.
J Appl Stat. 2020 Dec 30;49(6):1598-1610. doi: 10.1080/02664763.2020.1865883. eCollection 2022.
7
A mutual information based R-vine copula strategy to estimate VaR in high frequency stock market data.
PLoS One. 2021 Jun 17;16(6):e0253307. doi: 10.1371/journal.pone.0253307. eCollection 2021.
8
Copula based prediction models: an application to an aortic regurgitation study.
BMC Med Res Methodol. 2007 Jun 16;7:21. doi: 10.1186/1471-2288-7-21.
9
Extreme value modelling of Ghana stock exchange index.
Springerplus. 2015 Nov 12;4:696. doi: 10.1186/s40064-015-1306-y. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验