Müller Fernanda Maria, Righi Marcelo Brutti
Business School, Federal University of Rio Grande do Sul, Washington Luiz, 855, Porto Alegre, zip 90010-460 Brazil.
Comput Econ. 2022 Nov 10:1-36. doi: 10.1007/s10614-022-10330-x.
We investigate the performance of VaR (Value at Risk) forecasts, considering different multivariate models: HS (Historical Simulation), DCC-GARCH (Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity) with normal and Student's distribution, GO-GARCH (Generalized Orthogonal-Generalized Autoregressive Conditional Heteroskedasticity), and copulas Vine (C-Vine, D-Vine, and R-Vine). For copula models, we consider that marginal distribution follow normal, Student's and skewed Student's distribution. We assessed the performance of the models using stocks belonging to the Ibovespa index during the period from January 2012 to April 2022. We build portfolios with 6 and 12 stocks considering two strategies to form the portfolio weights. We use a rolling estimation window of 500 and 1000 observations and 1%, 2.5%, and 5% as significance levels for the risk estimation. To evaluate the quality of the risk forecasts, we compute the realized loss and cost. Our results show that the performance of the models is sensitive to the use of different significance levels, rolling windows, and strategies to determine portfolio weights. Furthermore, we find that the model that presents the best trade-off between the costs from risk overestimation and underestimation does not coincide with the model suggested by the realized loss.
我们研究了风险价值(VaR)预测的性能,考虑了不同的多元模型:历史模拟法(HS)、具有正态分布和学生分布的动态条件相关广义自回归条件异方差模型(DCC-GARCH)、广义正交广义自回归条件异方差模型(GO-GARCH)以及藤Copula模型(C-Vine、D-Vine和R-Vine)。对于Copula模型,我们考虑边际分布服从正态分布、学生分布和偏态学生分布。我们使用2012年1月至2022年4月期间属于伊博维斯帕指数的股票评估了这些模型的性能。我们构建了包含6只和12只股票的投资组合,考虑了两种策略来形成投资组合权重。我们使用500和1000个观测值的滚动估计窗口,并将1%、2.5%和5%作为风险估计的显著性水平。为了评估风险预测的质量,我们计算了实际损失和成本。我们的结果表明,模型的性能对使用不同的显著性水平、滚动窗口和确定投资组合权重的策略敏感。此外,我们发现,在风险高估和低估成本之间呈现最佳权衡的模型与实际损失所建议的模型不一致。