Li Xin, Li Xianran, Fridman Eyal, Tesso Tesfaye T, Yu Jianming
Department of Agronomy, Iowa State University, Ames, IA 50011;
Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel;
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11823-8. doi: 10.1073/pnas.1509229112. Epub 2015 Sep 8.
Heterosis is a main contributor to yield increase in many crop species. Different mechanisms have been proposed for heterosis: dominance, overdominance, epistasis, epigenetics, and protein metabolite changes. However, only limited examples of molecular dissection and validation of these mechanisms are available. Here, we present an example of discovery and validation of heterosis generated by a combination of repulsion linkage and dominance. Using a recombinant inbred line population, a separate quantitative trait locus (QTL) for plant height (qHT7.1) was identified near the genomic region harboring the known auxin transporter Dw3 gene. With two loci having repulsion linkage between two inbreds, heterosis in the hybrid can appear as a single locus with an overdominance mode of inheritance (i.e., pseudo-overdominance). Individually, alleles conferring taller plant height exhibited complete dominance over alleles conferring shorter height. Detailed analyses of different height components demonstrated that qHT7.1 affects both the upper and lower parts of the plant, whereas Dw3 affects only the part below the flag leaf. Computer simulations show that repulsion linkage could influence QTL detection and estimation of effect in segregating populations. Guided by findings in linkage mapping, a genome-wide association study of plant height with a sorghum diversity panel pinpointed genomic regions underlying the trait variation, including Dw1, Dw2, Dw3, Dw4, and qHT7.1. Multilocus mixed model analysis confirmed the advantage of complex trait dissection using an integrated approach. Besides identifying a specific genetic example of heterosis, our research indicated that integrated molecular dissection of complex traits in different population types can enable plant breeders to fine tune the breeding process for crop production.
杂种优势是许多作物产量增加的主要因素。针对杂种优势提出了不同的机制:显性、超显性、上位性、表观遗传学以及蛋白质代谢物变化。然而,对这些机制进行分子剖析和验证的实例有限。在此,我们展示一个由相斥连锁和显性组合产生杂种优势的发现与验证实例。利用重组自交系群体,在含有已知生长素转运体Dw3基因的基因组区域附近鉴定出一个单独的株高数量性状位点(QTL)(qHT7.1)。由于两个近交系之间的两个位点存在相斥连锁,杂种中的杂种优势可表现为单个位点具有超显性遗传模式(即假超显性)。单独来看,赋予较高株高的等位基因对赋予较矮株高的等位基因表现出完全显性。对不同株高组成部分的详细分析表明,qHT7.1影响植株的上部和下部,而Dw3仅影响旗叶以下部分。计算机模拟表明,相斥连锁可能影响分离群体中QTL的检测和效应估计。在连锁图谱研究结果的指导下,利用高粱多样性群体对株高进行全基因组关联研究,确定了该性状变异的潜在基因组区域,包括Dw1、Dw2、Dw3、Dw4和qHT7.1。多位点混合模型分析证实了采用综合方法剖析复杂性状的优势。除了鉴定杂种优势的一个特定遗传实例外,我们的研究还表明,对不同群体类型的复杂性状进行综合分子剖析能够使植物育种者微调作物生产的育种过程。