Suppr超能文献

优良杂交稻杂种产量优势的遗传构成。

Genetic composition of yield heterosis in an elite rice hybrid.

机构信息

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15847-52. doi: 10.1073/pnas.1214141109. Epub 2012 Sep 10.

Abstract

Heterosis refers to the superior performance of hybrids relative to the parents. Utilization of heterosis has contributed tremendously to the increased productivity in many crops for decades. Although there have been a range of studies on various aspects of heterosis, the key to understanding the biological mechanisms of heterotic performance in crop hybrids is the genetic basis, much of which is still uncharacterized. In this study, we dissected the genetic composition of yield and yield component traits using data of replicated field trials of an "immortalized F(2)" population derived from an elite rice hybrid. On the basis of an ultrahigh-density SNP bin map constructed with population sequencing, we calculated single-locus and epistatic genetic effects in the whole genome and identified components pertaining to heterosis of the hybrid. The results showed that the relative contributions of the genetic components varied with traits. Overdominance/pseudo-overdominance is the most important contributor to heterosis of yield, number of grains per panicle, and grain weight. Dominance × dominance interaction is important for heterosis of tillers per plant and grain weight and has roles in yield and grain number. Single-locus dominance has relatively small contributions in all of the traits. The results suggest that cumulative effects of these components may adequately explain the genetic basis of heterosis in the hybrid.

摘要

杂种优势是指杂种相对于亲本的表现优势。几十年来,杂种优势的利用极大地提高了许多作物的生产力。尽管已经有许多关于杂种优势各个方面的研究,但理解作物杂种优势表现的生物学机制的关键是遗传基础,其中很大一部分仍未被描述。在这项研究中,我们利用从一个优秀的水稻杂种衍生的“不朽 F2”群体的重复田间试验数据,剖析了产量和产量构成性状的遗传组成。基于群体测序构建的超高密度 SNP -bin 图谱,我们计算了整个基因组中单基因和上位性遗传效应,并鉴定了与杂种优势相关的成分。结果表明,遗传成分的相对贡献随性状而变化。超显性/拟超显性是产量、每穗粒数和粒重杂种优势的最重要贡献者。显性×显性互作对每株分蘖数和粒重的杂种优势很重要,并在产量和粒数中起作用。单基因显性在所有性状中贡献相对较小。结果表明,这些成分的累积效应可能足以解释杂种优势的遗传基础。

相似文献

1
Genetic composition of yield heterosis in an elite rice hybrid.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15847-52. doi: 10.1073/pnas.1214141109. Epub 2012 Sep 10.
2
Genetic Components of Heterosis for Seedling Traits in an Elite Rice Hybrid Analyzed Using an Immortalized F2 Population.
J Genet Genomics. 2016 Feb 20;43(2):87-97. doi: 10.1016/j.jgg.2016.01.002. Epub 2016 Jan 20.
3
6
Genetic basis of grain yield heterosis in an "immortalized F₂" maize population.
Theor Appl Genet. 2014 Oct;127(10):2149-58. doi: 10.1007/s00122-014-2368-x. Epub 2014 Aug 8.
7
Spatial and temporal expression modes of MicroRNAs in an elite rice hybrid and its parental lines.
Planta. 2013 Aug;238(2):259-69. doi: 10.1007/s00425-013-1881-5. Epub 2013 May 3.
8
Assembly of yield heterosis of an elite rice hybrid is promising by manipulating dominant quantitative trait loci.
J Integr Plant Biol. 2022 Mar;64(3):688-701. doi: 10.1111/jipb.13220. Epub 2022 Mar 5.
9
Genomic architecture of heterosis for yield traits in rice.
Nature. 2016 Sep 29;537(7622):629-633. doi: 10.1038/nature19760. Epub 2016 Sep 7.

引用本文的文献

1
The Role of Hybrid Varieties in Enhancing Crop Productivity and Sustainability in Nepalese Agriculture.
Scientifica (Cairo). 2025 Jul 21;2025:8275428. doi: 10.1155/sci5/8275428. eCollection 2025.
2
Molecular and physiological basis of heterosis in hybrid rice performance.
Mol Breed. 2025 May 23;45(6):49. doi: 10.1007/s11032-025-01577-x. eCollection 2025 Jun.
3
GWAS-based population genetic analysis identifies bZIP29 as a heterotic gene in maize.
Plant Commun. 2025 May 12;6(5):101289. doi: 10.1016/j.xplc.2025.101289. Epub 2025 Feb 20.
4
Accelerating eucalypt clone selection pipeline via cloned progeny trials and molecular data.
Plant Methods. 2025 Feb 14;21(1):19. doi: 10.1186/s13007-025-01342-3.
6
Exploring the Genetic Basis of spp. Resistance in Eucalypts.
Curr Issues Mol Biol. 2024 Sep 27;46(10):10854-10879. doi: 10.3390/cimb46100645.
8
Unlocking the mystery of heterosis opens the era of intelligent rice breeding.
Plant Physiol. 2024 Oct 1;196(2):735-744. doi: 10.1093/plphys/kiae385.
10
The genetic basis and process of inbreeding depression in an elite hybrid rice.
Sci China Life Sci. 2024 Aug;67(8):1727-1738. doi: 10.1007/s11427-023-2547-2. Epub 2024 Apr 24.

本文引用的文献

1
Genomic and metabolic prediction of complex heterotic traits in hybrid maize.
Nat Genet. 2012 Jan 15;44(2):217-20. doi: 10.1038/ng.1033.
2
Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping.
BMC Bioinformatics. 2011 May 26;12:211. doi: 10.1186/1471-2105-12-211.
4
A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding.
New Phytol. 2011 Mar;189(4):923-937. doi: 10.1111/j.1469-8137.2010.03574.x. Epub 2010 Dec 17.
5
Heterosis.
Plant Cell. 2010 Jul;22(7):2105-12. doi: 10.1105/tpc.110.076133. Epub 2010 Jul 9.
6
Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10578-83. doi: 10.1073/pnas.1005931107. Epub 2010 May 24.
7
The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato.
Nat Genet. 2010 May;42(5):459-63. doi: 10.1038/ng.550. Epub 2010 Mar 28.
8
Genetic and molecular bases of rice yield.
Annu Rev Plant Biol. 2010;61:421-42. doi: 10.1146/annurev-arplant-042809-112209.
9
Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population.
Theor Appl Genet. 2010 Jan;120(2):333-40. doi: 10.1007/s00122-009-1213-0. Epub 2009 Nov 20.
10
Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids.
Nature. 2009 Jan 15;457(7227):327-31. doi: 10.1038/nature07523. Epub 2008 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验