IEEE Trans Pattern Anal Mach Intell. 2014 Sep;36(9):1816-31. doi: 10.1109/TPAMI.2014.2299798.
Most conventional algorithms for non-Lambertian photometric stereo can be partitioned into two categories. The first category is built upon stable outlier rejection techniques while assuming a dense Lambertian structure for the inliers, and thus performance degrades when general diffuse regions are present. The second utilizes complex reflectance representations and non-linear optimization over pixels to handle non-Lambertian surfaces, but does not explicitly account for shadows or other forms of corrupting outliers. In this paper, we present a purely pixel-wise photometric stereo method that stably and efficiently handles various non-Lambertian effects by assuming that appearances can be decomposed into a sparse, non-diffuse component (e.g., shadows, specularities, etc.) and a diffuse component represented by a monotonic function of the surface normal and lighting dot-product. This function is constructed using a piecewise linear approximation to the inverse diffuse model, leading to closed-form estimates of the surface normals and model parameters in the absence of non-diffuse corruptions. The latter are modeled as latent variables embedded within a hierarchical Bayesian model such that we may accurately compute the unknown surface normals while simultaneously separating diffuse from non-diffuse components. Extensive evaluations are performed that show state-of-the-art performance using both synthetic and real-world images.
大多数非朗伯光度立体学的传统算法可以分为两类。第一类基于稳定的异常值拒绝技术,同时假设内点具有密集的朗伯结构,因此当存在一般漫射区域时,性能会下降。第二类利用复杂的反射率表示和像素上的非线性优化来处理非朗伯表面,但没有明确考虑阴影或其他形式的有噪声点。在本文中,我们提出了一种纯粹基于像素的光度立体学方法,通过假设外观可以分解为稀疏的、非漫射分量(例如阴影、镜面反射等)和由表面法向和光照点积的单调函数表示的漫射分量,从而稳定有效地处理各种非朗伯效应。该函数是通过对逆漫射模型进行分段线性逼近构建的,从而在没有非漫射噪声的情况下得到表面法线和模型参数的闭式估计。后者被建模为分层贝叶斯模型中的潜在变量,以便我们可以在准确计算未知表面法线的同时,将漫射分量与非漫射分量分离。我们进行了广泛的评估,使用合成和真实图像展示了最先进的性能。