Ju Yakun, Dong Junyu, Chen Sheng
IEEE Trans Image Process. 2021;30:3676-3690. doi: 10.1109/TIP.2021.3064230. Epub 2021 Mar 17.
Photometric stereo recovers three-dimensional (3D) object surface normal from multiple images under different illumination directions. Traditional photometric stereo methods suffer from the problem of non-Lambertian surfaces with general reflectance. By leveraging deep neural networks, learning-based methods are capable of improving the surface normal estimation under general non-Lambertian surfaces. These state-of-the-art learning-based methods however do not associate surface normal with reconstructed images and, therefore, they cannot explore the beneficial effect of such association on the estimation of the surface normal. In this paper, we specifically exploit the positive impact of this association and propose a novel dual regression network for both fine surface normals and arbitrary reconstructed images in calibrated photometric stereo. Our work unifies the 3D reconstruction and rendering tasks in a deep learning framework, with the explorations including: 1. generating specified reconstructed images under arbitrary illumination directions, which provides more intuitive perception of the reflectance and is extremely useful for visual applications, such as virtual reality, and 2. our dual regression scheme introduces an additional constraint on observed images and reconstructed images, which forms a closed-loop to provide additional supervision. Experiments show that our proposed method achieves accurate reconstructed images under arbitrarily specified illumination directions and it significantly outperforms the state-of-the-art learning-based single regression methods in calibrated photometric stereo.
光度立体视觉从不同光照方向下的多幅图像中恢复三维(3D)物体表面法线。传统的光度立体视觉方法存在一般反射率的非朗伯表面问题。通过利用深度神经网络,基于学习的方法能够改善一般非朗伯表面下的表面法线估计。然而,这些基于学习的最新方法并没有将表面法线与重建图像关联起来,因此,它们无法探索这种关联对表面法线估计的有益影响。在本文中,我们专门利用这种关联的积极影响,为校准光度立体视觉中的精细表面法线和任意重建图像提出了一种新颖的双回归网络。我们的工作在深度学习框架中统一了3D重建和渲染任务,探索内容包括:1. 在任意光照方向下生成指定的重建图像,这提供了对反射率更直观的感知,并且对诸如虚拟现实等视觉应用非常有用;2. 我们的双回归方案对观测图像和重建图像引入了额外的约束,形成了一个闭环以提供额外的监督。实验表明,我们提出的方法在任意指定的光照方向下实现了准确的重建图像,并且在校准光度立体视觉中显著优于基于学习的最新单回归方法。