Suppr超能文献

调节分子伴侣的氧化还原开关。

The redox switch that regulates molecular chaperones.

作者信息

Conway Myra E, Lee Christopher

出版信息

Biomol Concepts. 2015 Aug;6(4):269-84. doi: 10.1515/bmc-2015-0015.

Abstract

Modification of reactive cysteine residues plays an integral role in redox-regulated reactions. Oxidation of thiolate anions to sulphenic acid can result in disulphide bond formation, or overoxidation to sulphonic acid, representing reversible and irreversible endpoints of cysteine oxidation, respectively. The antioxidant systems of the cell, including the thioredoxin and glutaredoxin systems, aim to prevent these higher and irreversible oxidation states. This is important as these redox transitions have numerous roles in regulating the structure/function relationship of proteins. Proteins with redox-active switches as described for peroxiredoxin (Prx) and protein disulphide isomerase (PDI) can undergo dynamic structural rearrangement resulting in a gain of function. For Prx, transition from cysteine sulphenic acid to sulphinic acid is described as an adaptive response during increased cellular stress causing Prx to form higher molecular weight aggregates, switching its role from antioxidant to molecular chaperone. Evidence in support of PDI as a redox-regulated chaperone is also gaining impetus, where oxidation of the redox-active CXXC regions causes a structural change, exposing its hydrophobic region, facilitating polypeptide folding. In this review, we will focus on these two chaperones that are directly regulated through thiol-disulphide exchange and detail how these redox-induced switches allow for dual activity. Moreover, we will introduce a new role for a metabolic protein, the branched-chain aminotransferase, and discuss how it shares common mechanistic features with these well-documented chaperones. Together, the physiological importance of the redox regulation of these proteins under pathological conditions such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis will be discussed to illustrate the impact and importance of correct folding and chaperone-mediated activity.

摘要

反应性半胱氨酸残基的修饰在氧化还原调节反应中起着不可或缺的作用。硫醇盐阴离子氧化为亚磺酸可导致二硫键形成,或进一步过度氧化为磺酸,分别代表半胱氨酸氧化的可逆和不可逆终点。细胞的抗氧化系统,包括硫氧还蛋白和谷氧还蛋白系统,旨在防止这些更高的不可逆氧化状态。这一点很重要,因为这些氧化还原转变在调节蛋白质的结构/功能关系中具有多种作用。具有如过氧化物酶(Prx)和蛋白质二硫键异构酶(PDI)所述的氧化还原活性开关的蛋白质可发生动态结构重排,从而获得功能。对于Prx,从半胱氨酸亚磺酸到亚磺酸盐的转变被描述为细胞应激增加期间的一种适应性反应,导致Prx形成更高分子量的聚集体,将其作用从抗氧化剂转变为分子伴侣。支持PDI作为氧化还原调节伴侣的证据也在增加,其中氧化还原活性CXXC区域的氧化会导致结构变化,暴露出其疏水区域,促进多肽折叠。在这篇综述中,我们将重点关注这两种通过硫醇-二硫键交换直接调节的伴侣蛋白,并详细介绍这些氧化还原诱导的开关如何实现双重活性。此外,我们将介绍一种代谢蛋白——支链氨基转移酶的新作用,并讨论它如何与这些有充分记录的伴侣蛋白具有共同的机制特征。同时,将讨论这些蛋白质在阿尔茨海默病、帕金森病和肌萎缩侧索硬化症等病理条件下氧化还原调节的生理重要性,以说明正确折叠和伴侣介导活性的影响和重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验