Suppr超能文献

用于体内半衰期延长的抗小鼠肿瘤坏死因子受体1结构域抗体的药代动力学和药效学特征

Pharmacokinetic and Pharmacodynamic Characterisation of an Anti-Mouse TNF Receptor 1 Domain Antibody Formatted for In Vivo Half-Life Extension.

作者信息

Goodall Laura J, Ovecka Milan, Rycroft Daniel, Friel Sarah L, Sanderson Andrew, Mistry Prafull, Davies Marie L, Stoop A Allart

机构信息

Biopharm Innovation Unit, Biopharm R&D, GlaxoSmithKline, Stevenage, United Kingdom.

R&D Projects, Clinical Platforms and Sciences, GlaxoSmithKline, Stevenage, United Kingdom.

出版信息

PLoS One. 2015 Sep 9;10(9):e0137065. doi: 10.1371/journal.pone.0137065. eCollection 2015.

Abstract

Tumour Necrosis Factor-α (TNF-α) inhibition has been transformational in the treatment of patients with inflammatory disease, e.g. rheumatoid arthritis. Intriguingly, TNF-α signals through two receptors, TNFR1 and TNFR2, which have been associated with detrimental inflammatory and beneficial immune-regulatory processes, respectively. To investigate if selective TNFR1 inhibition might provide benefits over pan TNF-α inhibition, tools to investigate the potential impact of pharmacological intervention are needed. Receptor-deficient mice have been very insightful, but are not reversible and could distort receptor cross-talk, while inhibitory anti-TNFR1 monoclonal antibodies have a propensity to induce receptor agonism. Therefore, we set out to characterise a monovalent anti-TNFR1 domain antibody (dAb) formatted for in vivo use. The mouse TNFR1 antagonist (DMS5540) is a genetic fusion product of an anti-TNFR1 dAb with an albumin-binding dAb (AlbudAb). It bound mouse TNFR1, but not human TNFR1, and was an antagonist of TNF-α-mediated cytotoxicity in a L929 cell assay. Surprisingly, the dAb did not compete with TNF-α for TNFR1-binding. This was supported by additional data showing the anti-TNFR1 epitope mapped to a single residue in the first domain of TNFR1. Pharmacokinetic studies of DMS5540 in mice over three doses (0.1, 1.0 and 10 mg/kg) confirmed extended in vivo half-life, mediated by the AlbudAb, and demonstrated non-linear clearance of DMS5540. Target engagement was further confirmed by dose-dependent increases in total soluble TNFR1 levels. Functional in vivo activity was demonstrated in a mouse challenge study, where DMS5540 provided dose-dependent inhibition of serum IL-6 increases in response to bolus mouse TNF-α injections. Hence, DMS5540 is a potent mouse TNFR1 antagonist with in vivo pharmacokinetic and pharmacodynamic properties compatible with use in pre-clinical disease models and could provide a useful tool to dissect the individual contributions of TNFR1 and TNFR2 in homeostasis and disease.

摘要

肿瘤坏死因子-α(TNF-α)抑制疗法在治疗炎症性疾病患者(如类风湿性关节炎)方面带来了变革。有趣的是,TNF-α通过两种受体发出信号,即TNFR1和TNFR2,它们分别与有害的炎症过程和有益的免疫调节过程相关。为了研究选择性TNFR1抑制是否可能比泛TNF-α抑制更具优势,需要有工具来研究药物干预的潜在影响。受体缺陷小鼠很有启发性,但不可逆转且可能扭曲受体间的相互作用,而抑制性抗TNFR1单克隆抗体有诱导受体激动的倾向。因此,我们着手对一种用于体内的单价抗TNFR1结构域抗体(dAb)进行特性描述。小鼠TNFR1拮抗剂(DMS5540)是一种抗TNFR1 dAb与白蛋白结合dAb(AlbudAb)的基因融合产物。它能结合小鼠TNFR1,但不能结合人TNFR1,并且在L929细胞试验中是TNF-α介导的细胞毒性的拮抗剂。令人惊讶的是,该dAb不与TNF-α竞争TNFR1结合。其他数据支持了这一点,这些数据表明抗TNFR1表位定位于TNFR1第一个结构域中的单个残基。对DMS5540在小鼠体内进行的三个剂量(0.1、1.0和10 mg/kg)的药代动力学研究证实,由AlbudAb介导其体内半衰期延长,并证明DMS5540的清除呈非线性。通过总可溶性TNFR1水平的剂量依赖性增加进一步证实了靶点结合。在一项小鼠激发研究中证明了其体内功能活性,在该研究中,DMS5540对推注小鼠TNF-α注射后血清IL-6的增加提供了剂量依赖性抑制。因此,DMS5540是一种有效的小鼠TNFR1拮抗剂,其体内药代动力学和药效学特性与在临床前疾病模型中的应用兼容,并且可以提供一个有用的工具来剖析TNFR1和TNFR2在体内平衡和疾病中的各自作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6621/4564187/0e9e34261e7a/pone.0137065.g001.jpg

相似文献

3
An anti-TNFR1 scFv-HSA fusion protein as selective antagonist of TNF action.
Protein Eng Des Sel. 2013 Oct;26(10):581-7. doi: 10.1093/protein/gzt044. Epub 2013 Sep 4.
4
Selective inhibition of TNFR1 reduces osteoclast numbers and is differentiated from anti-TNF in a LPS-driven model of inflammatory bone loss.
Biochem Biophys Res Commun. 2015 Sep 4;464(4):1145-1150. doi: 10.1016/j.bbrc.2015.07.094. Epub 2015 Jul 22.
6
Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1.
Cytokine Growth Factor Rev. 2011 Oct-Dec;22(5-6):311-9. doi: 10.1016/j.cytogfr.2011.09.004. Epub 2011 Oct 1.
7
Improved monovalent TNF receptor 1-selective inhibitor with novel heterodimerizing Fc.
MAbs. 2019 May/Jun;11(4):653-665. doi: 10.1080/19420862.2019.1596512. Epub 2019 Mar 31.
8
ATROSAB, a humanized antagonistic anti-tumor necrosis factor receptor one-specific antibody.
MAbs. 2010 Nov-Dec;2(6):639-47. doi: 10.4161/mabs.2.6.13583. Epub 2010 Nov 1.
9
Structural optimization of a TNFR1-selective antagonistic TNFα mutant to create new-modality TNF-regulating biologics.
J Biol Chem. 2020 Jul 10;295(28):9379-9391. doi: 10.1074/jbc.RA120.012723. Epub 2020 May 12.
10
Generation and characterization of small single domain antibodies inhibiting human tumor necrosis factor receptor 1.
J Biol Chem. 2015 Feb 13;290(7):4022-37. doi: 10.1074/jbc.M114.617787. Epub 2014 Dec 23.

引用本文的文献

1
Mathematical Models to Characterize the Absorption, Distribution, Metabolism, and Excretion of Protein Therapeutics.
Drug Metab Dispos. 2022 Jun;50(6):867-878. doi: 10.1124/dmd.121.000460. Epub 2022 Feb 23.
2
Receptor Specificity Engineering of TNF Superfamily Ligands.
Pharmaceutics. 2022 Jan 13;14(1):181. doi: 10.3390/pharmaceutics14010181.
3
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections.
Int J Mol Sci. 2021 May 22;22(11):5461. doi: 10.3390/ijms22115461.
4
Bringing the Heavy Chain to Light: Creating a Symmetric, Bivalent IgG-Like Bispecific.
Antibodies (Basel). 2020 Nov 6;9(4):62. doi: 10.3390/antib9040062.
5
Injectables and Depots to Prolong Drug Action of Proteins and Peptides.
Pharmaceutics. 2020 Oct 21;12(10):999. doi: 10.3390/pharmaceutics12100999.
6
Selective Targeting of TNF Receptors as a Novel Therapeutic Approach.
Front Cell Dev Biol. 2020 May 26;8:401. doi: 10.3389/fcell.2020.00401. eCollection 2020.
7
Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics.
Medchemcomm. 2019 Jun 6;10(7):1068-1081. doi: 10.1039/c9md00018f. eCollection 2019 Jul 1.
8
Inhibition of TNF Receptor p55 By a Domain Antibody Attenuates the Initial Phase of Acid-Induced Lung Injury in Mice.
Front Immunol. 2017 Feb 13;8:128. doi: 10.3389/fimmu.2017.00128. eCollection 2017.

本文引用的文献

3
4
Tumor necrosis factor receptor cross-talk.
FEBS J. 2011 Apr;278(6):888-98. doi: 10.1111/j.1742-4658.2011.08017.x. Epub 2011 Feb 8.
5
TNFR1-induced activation of the classical NF-κB pathway.
FEBS J. 2011 Apr;278(6):862-76. doi: 10.1111/j.1742-4658.2011.08015.x. Epub 2011 Feb 8.
6
TNF receptor 2 pathway: drug target for autoimmune diseases.
Nat Rev Drug Discov. 2010 Jun;9(6):482-93. doi: 10.1038/nrd3030. Epub 2010 May 21.
7
Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model.
J Hepatol. 2009 Jul;51(1):168-75. doi: 10.1016/j.jhep.2009.02.032. Epub 2009 May 3.
8
Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation.
Circulation. 2009 Mar 17;119(10):1386-97. doi: 10.1161/CIRCULATIONAHA.108.802918. Epub 2009 Mar 2.
9
Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs.
Protein Eng Des Sel. 2008 May;21(5):283-8. doi: 10.1093/protein/gzm067. Epub 2008 Apr 2.
10
TNF-mediated inflammatory disease.
J Pathol. 2008 Jan;214(2):149-60. doi: 10.1002/path.2287.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验