Suppr超能文献

联合学习视觉相关字典用于大规模视觉识别应用。

Jointly Learning Visually Correlated Dictionaries for Large-Scale Visual Recognition Applications.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2014 Apr;36(4):715-30. doi: 10.1109/TPAMI.2013.189.

Abstract

Learning discriminative dictionaries for image content representation plays a critical role in visual recognition. In this paper, we present a joint dictionary learning (JDL) algorithm which exploits the inter-category visual correlations to learn more discriminative dictionaries. Given a group of visually correlated categories, JDL simultaneously learns one common dictionary and multiple category-specific dictionaries to explicitly separate the shared visual atoms from the category-specific ones. The problem of JDL is formulated as a joint optimization with a discrimination promotion term according to the Fisher discrimination criterion. A visual tree method is developed to cluster a large number of categories into a set of disjoint groups, so that each of them contains a reasonable number of visually correlated categories. The process of image category clustering helps JDL to learn better dictionaries for classification by ensuring that the categories in the same group are of strong visual correlations. Also, it makes JDL to be computationally affordable in large-scale applications. Three classification schemes are adopted to make full use of the dictionaries learned by JDL for visual content representation in the task of image categorization. The effectiveness of the proposed algorithms has been evaluated using two image databases containing 17 and 1,000 categories, respectively.

摘要

学习用于图像内容表示的鉴别字典在视觉识别中起着至关重要的作用。在本文中,我们提出了一种联合字典学习(JDL)算法,该算法利用类别间的视觉相关性来学习更具鉴别力的字典。给定一组视觉相关的类别,JDL 同时学习一个公共字典和多个类别特定字典,以明确将共享的视觉原子与类别特定的原子区分开来。根据 Fisher 判别准则,JDL 的问题被表述为一个具有判别促进项的联合优化问题。开发了一种视觉树方法将大量类别聚类成一组不相交的组,使它们中的每一个都包含数量合理的视觉相关类别。图像类别聚类的过程有助于 JDL 通过确保同一组中的类别具有很强的视觉相关性来学习更好的分类字典。此外,它使得 JDL 在大规模应用中具有计算可承受性。采用了三种分类方案,以充分利用 JDL 为视觉内容表示学习的字典,用于图像分类任务。使用包含 17 个和 1000 个类别的两个图像数据库评估了所提出算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验