Suppr超能文献

基于多模态任务驱动的图像分类词典学习

Multimodal Task-Driven Dictionary Learning for Image Classification.

出版信息

IEEE Trans Image Process. 2016 Jan;25(1):24-38. doi: 10.1109/TIP.2015.2496275. Epub 2015 Oct 30.

Abstract

Dictionary learning algorithms have been successfully used for both reconstructive and discriminative tasks, where an input signal is represented with a sparse linear combination of dictionary atoms. While these methods are mostly developed for single-modality scenarios, recent studies have demonstrated the advantages of feature-level fusion based on the joint sparse representation of the multimodal inputs. In this paper, we propose a multimodal task-driven dictionary learning algorithm under the joint sparsity constraint (prior) to enforce collaborations among multiple homogeneous/heterogeneous sources of information. In this task-driven formulation, the multimodal dictionaries are learned simultaneously with their corresponding classifiers. The resulting multimodal dictionaries can generate discriminative latent features (sparse codes) from the data that are optimized for a given task such as binary or multiclass classification. Moreover, we present an extension of the proposed formulation using a mixed joint and independent sparsity prior, which facilitates more flexible fusion of the modalities at feature level. The efficacy of the proposed algorithms for multimodal classification is illustrated on four different applications--multimodal face recognition, multi-view face recognition, multi-view action recognition, and multimodal biometric recognition. It is also shown that, compared with the counterpart reconstructive-based dictionary learning algorithms, the task-driven formulations are more computationally efficient in the sense that they can be equipped with more compact dictionaries and still achieve superior performance.

摘要

字典学习算法已成功用于重建和判别任务,其中输入信号由字典原子的稀疏线性组合表示。虽然这些方法主要是为单模态情况开发的,但最近的研究表明,基于多模态输入的联合稀疏表示的特征级融合具有优势。在本文中,我们提出了一种基于联合稀疏约束(先验)的多模态任务驱动字典学习算法,以强制多个同质/异质信息源之间的协作。在这种任务驱动的公式中,多模态字典与相应的分类器一起学习。由此产生的多模态字典可以从数据中生成用于特定任务(例如二进制或多类分类)的判别潜在特征(稀疏代码)。此外,我们还提出了一种使用混合联合和独立稀疏先验的扩展形式,这使得在特征级更灵活地融合模态成为可能。所提出算法在四个不同应用中的多模态分类的有效性得到了说明,包括多模态人脸识别、多视角人脸识别、多视角动作识别和多模态生物识别。还表明,与基于重构的字典学习算法相比,任务驱动的公式在计算效率方面更具优势,因为它们可以配备更紧凑的字典,并且仍然可以实现卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验