Suppr超能文献

升:具有标签特定特征的多标签学习。

Lift: Multi-Label Learning with Label-Specific Features.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2015 Jan;37(1):107-20. doi: 10.1109/TPAMI.2014.2339815.

Abstract

Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels. Accordingly, an intuitive yet effective algorithm named LIFT, i.e. multi-label learning with Label specific Features, is proposed. LIFT firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Comprehensive experiments on a total of 17 benchmark data sets clearly validate the superiority of LIFT against other well-established multi-label learning algorithms as well as the effectiveness of label-specific features.

摘要

多标签学习处理的问题是,每个示例都由单个实例(特征向量)表示,同时与一组类别标签相关联。现有的方法通过处理相同的特征集从多标签数据中学习,即每个示例的实例表示都用于所有类别标签的判别过程。然而,这种流行的策略可能不是最优的,因为每个标签都应该具有自己的特定特征。在本文中,研究了另一种从多标签数据中学习的策略,即利用特定于标签的特征来帮助判别不同的类别标签。相应地,提出了一种直观而有效的算法,即 LIFT,即具有标签特定特征的多标签学习。LIFT 首先通过对其正例和负例进行聚类分析,为每个标签构建特定的特征,然后通过查询聚类结果进行训练和测试。在总共 17 个基准数据集上的综合实验清楚地验证了 LIFT 相对于其他成熟的多标签学习算法的优越性,以及标签特定特征的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验