Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
IEEE Trans Pattern Anal Mach Intell. 2015 Mar;37(3):667-680. doi: 10.1109/TPAMI.2014.2343981.
In this paper we propose a new method for generating synthetic handwritten signature images for biometric applications. The procedures we introduce imitate the mechanism of motor equivalence which divides human handwriting into two steps: the working out of an effector independent action plan and its execution via the corresponding neuromuscular path. The action plan is represented as a trajectory on a spatial grid. This contains both the signature text and its flourish, if there is one. The neuromuscular path is simulated by applying a kinematic Kaiser filter to the trajectory plan. The length of the filter depends on the pen speed which is generated using a scalar version of the sigma lognormal model. An ink deposition model, applied pixel by pixel to the pen trajectory, provides realistic static signature images. The lexical and morphological properties of the synthesized signatures as well as the range of the synthesis parameters have been estimated from real databases of real signatures such as the MCYT Off-line and the GPDS960GraySignature corpuses. The performance experiments show that by tuning only four parameters it is possible to generate synthetic identities with different stability and forgers with different skills. Therefore it is possible to create datasets of synthetic signatures with a performance similar to databases of real signatures. Moreover, we can customize the created dataset to produce skilled forgeries or simple forgeries which are easier to detect, depending on what the researcher needs. Perceptual evaluation gives an average confusion of 44.06 percent between real and synthetic signatures which shows the realism of the synthetic ones. The utility of the synthesized signatures is demonstrated by studying the influence of the pen type and number of users on an automatic signature verifier.
本文提出了一种新的用于生物识别应用的手写签名图像合成方法。我们介绍的过程模仿了运动等效机制,该机制将人类手写分为两个步骤:制定与效应器无关的动作计划和通过相应的神经肌肉路径执行。动作计划表示为空间网格上的轨迹。这既包含签名文本,也包含花押字(如果有)。通过将运动学凯泽滤波器应用于轨迹计划来模拟神经肌肉路径。滤波器的长度取决于笔速,笔速使用标量版本的西格玛对数正态模型生成。将墨迹沉积模型逐像素应用于笔轨迹,提供逼真的静态签名图像。合成签名的词汇和形态属性以及合成参数的范围都是从真实签名数据库(例如 MCYT Off-line 和 GPDS960GraySignature 语料库)中估计的。性能实验表明,通过仅调整四个参数,就可以生成具有不同稳定性的合成身份和具有不同技能的伪造者。因此,可以创建具有与真实签名数据库相似性能的合成签名数据集。此外,我们可以根据研究人员的需求,自定义创建的数据集,以生成技能较高的伪造签名或更易于检测的简单伪造签名。感知评估显示,真实签名和合成签名之间的平均混淆率为 44.06%,这表明合成签名具有很高的逼真度。通过研究笔类型和用户数量对自动签名验证器的影响,证明了合成签名的实用性。