Suppr超能文献

基于肌电信号的手写签名分析方法

Myoelectronic signal-based methodology for the analysis of handwritten signatures.

作者信息

Carmona-Duarte Cristina, de Torres-Peralta Rafael, Diaz Moises, Ferrer Miguel A, Martin-Rincon Marcos

机构信息

Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.

Department of Physical Education, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.

出版信息

Hum Mov Sci. 2017 Oct;55:18-30. doi: 10.1016/j.humov.2017.07.002. Epub 2017 Jul 24.

Abstract

With the overall aim of improving the synthesis of handwritten signatures, we have studied how muscle activation depends on handwriting style for both text and flourish. Surface electromyographic (EMG) signals from a set of twelve arm and trunk muscles were recorded in synchronization with handwriting produced on a digital Tablet. Correlations between these EMG signals and handwritten trajectory signals were analyzed so as to define the sequence of muscles activated during the different parts of the signature. Our results establish a correlation between the speed of the movement, stroke size, handwriting style and muscle activation. Muscle activity appeared to be clustered as a function of movement speed and handwriting style, a finding which may be used for filter design in a signature synthesizer.

摘要

为了全面提高手写签名的合成效果,我们研究了肌肉激活如何依赖于文本和花体字的书写风格。在数字数位板上进行手写时,同步记录了来自一组12块手臂和躯干肌肉的表面肌电(EMG)信号。分析了这些EMG信号与手写轨迹信号之间的相关性,以确定签名不同部分激活的肌肉顺序。我们的结果建立了运动速度、笔画大小、书写风格和肌肉激活之间的相关性。肌肉活动似乎根据运动速度和书写风格聚类,这一发现可用于签名合成器的滤波器设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验