Suppr超能文献

收缩期负荷增加会导致胎儿主动脉瓣和二尖瓣的不良重塑。

Increased systolic load causes adverse remodeling of fetal aortic and mitral valves.

作者信息

Tibayan Frederick A, Louey Samantha, Jonker Sonnet, Espinoza Herbert, Chattergoon Natasha, You Fanglei, Thornburg Kent L, Giraud George

机构信息

Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Department of Surgery, Oregon Health & Science University, Portland, Oregon; and

Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon;

出版信息

Am J Physiol Regul Integr Comp Physiol. 2015 Dec 15;309(12):R1490-8. doi: 10.1152/ajpregu.00040.2015. Epub 2015 Sep 9.

Abstract

While abnormal hemodynamic forces alter fetal myocardial growth, little is known about whether such insults affect fetal cardiac valve development. We hypothesized that chronically elevated systolic load would detrimentally alter fetal valve growth. Chronically instrumented fetal sheep received either a continuous infusion of adult sheep plasma to increase fetal blood pressure, or a lactated Ringer's infusion as a volume control beginning on day 126 ± 4 of gestation. After 8 days, mean arterial pressure was higher in the plasma infusion group (63.0 mmHg vs. 41.8 mmHg, P < 0.05). Mitral annular septal-lateral diameter (11.9 mm vs. 9.1 mm, P < 0.05), anterior leaflet length (7.7 mm vs. 6.4 mm, P < 0.05), and posterior leaflet length (P2; 4.0 mm vs. 3.0 mm, P < 0.05) were greater in the elevated load group. mRNA levels of Notch-1, TGF-β2, Wnt-2b, BMP-1, and versican were suppressed in aortic and mitral valve leaflets; elastin and α1 type I collagen mRNA levels were suppressed in the aortic valves only. We conclude that sustained elevated arterial pressure load on the fetal heart valve leads to anatomic remodeling and, surprisingly, suppression of signaling and extracellular matrix genes that are important to valve development. These novel findings have important implications on the developmental origins of valve disease and may have long-term consequences on valve function and durability.

摘要

虽然异常的血流动力学力量会改变胎儿心肌生长,但对于此类损伤是否会影响胎儿心脏瓣膜发育却知之甚少。我们假设,长期升高的收缩期负荷会对胎儿瓣膜生长产生不利影响。在妊娠126±4天开始,对长期植入仪器的胎羊持续输注成年羊血浆以升高胎儿血压,或输注乳酸林格液作为容量对照。8天后,血浆输注组的平均动脉压更高(63.0 mmHg对41.8 mmHg,P<0.05)。负荷升高组的二尖瓣环间隔-外侧直径(11.9 mm对9.1 mm,P<0.05)、前叶长度(7.7 mm对6.4 mm,P<0.05)和后叶长度(P2;4.0 mm对3.0 mm,P<0.05)更大。主动脉瓣和二尖瓣叶中Notch-1、TGF-β2、Wnt-2b、BMP-1和多功能蛋白聚糖的mRNA水平受到抑制;仅主动脉瓣中的弹性蛋白和α1 I型胶原蛋白mRNA水平受到抑制。我们得出结论,胎儿心脏瓣膜上持续升高的动脉压力负荷会导致解剖结构重塑,而且令人惊讶的是,会抑制对瓣膜发育很重要的信号传导和细胞外基质基因。这些新发现对瓣膜疾病的发育起源具有重要意义,可能会对瓣膜功能和耐久性产生长期影响。

相似文献

1
Increased systolic load causes adverse remodeling of fetal aortic and mitral valves.
Am J Physiol Regul Integr Comp Physiol. 2015 Dec 15;309(12):R1490-8. doi: 10.1152/ajpregu.00040.2015. Epub 2015 Sep 9.
3
Perinatal changes in mitral and aortic valve structure and composition.
Pediatr Dev Pathol. 2010 Nov-Dec;13(6):447-58. doi: 10.2350/09-11-0749-OA.1. Epub 2010 Jun 10.
4
Pregnancy-induced remodeling of heart valves.
Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1565-78. doi: 10.1152/ajpheart.00816.2014. Epub 2015 Sep 14.
6
Reduced systolic pressure load decreases cell-cycle activity in the fetal sheep heart.
Am J Physiol Regul Integr Comp Physiol. 2010 Aug;299(2):R573-8. doi: 10.1152/ajpregu.00754.2009. Epub 2010 May 19.
7
Mitral valve posterior leaflet reconstruction using extracellular matrix: an acute porcine study.
Eur J Cardiothorac Surg. 2018 Nov 1;54(5):832-840. doi: 10.1093/ejcts/ezy152.
8
Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease.
Cardiovasc Res. 2017 Jan;113(1):40-51. doi: 10.1093/cvr/cvw229. Epub 2016 Nov 7.
9
Nonbiased Molecular Screening Identifies Novel Molecular Regulators of Fibrogenic and Proliferative Signaling in Myxomatous Mitral Valve Disease.
Circ Cardiovasc Genet. 2015 Jun;8(3):516-28. doi: 10.1161/CIRCGENETICS.114.000921. Epub 2015 Mar 26.
10
6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep.
Biomaterials. 2015 Dec;73:175-84. doi: 10.1016/j.biomaterials.2015.09.016. Epub 2015 Sep 11.

引用本文的文献

1
Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development.
J Cardiovasc Dev Dis. 2022 Feb 21;9(2):64. doi: 10.3390/jcdd9020064.

本文引用的文献

1
Placental weight and foetal growth rate as predictors of ischaemic heart disease in a Swedish cohort.
J Dev Orig Health Dis. 2014 Jun;5(3):164-70. doi: 10.1017/S2040174414000142.
2
Can isolated annular dilatation cause significant ischemic mitral regurgitation? Another look at the causative mechanisms.
J Biomech. 2014 Jun 3;47(8):1792-9. doi: 10.1016/j.jbiomech.2014.03.033. Epub 2014 Apr 2.
3
Heart disease and stroke statistics--2014 update: a report from the American Heart Association.
Circulation. 2014 Jan 21;129(3):e28-e292. doi: 10.1161/01.cir.0000441139.02102.80. Epub 2013 Dec 18.
4
Mechanics of the mitral annulus in chronic ischemic cardiomyopathy.
Ann Biomed Eng. 2013 Oct;41(10):2171-80. doi: 10.1007/s10439-013-0813-7. Epub 2013 May 1.
5
Evidence of adaptive mitral leaflet growth.
J Mech Behav Biomed Mater. 2012 Nov;15:208-17. doi: 10.1016/j.jmbbm.2012.07.001. Epub 2012 Jul 10.
6
Metallothionein-dependent up-regulation of TGF-β2 participates in the remodelling of the myxomatous mitral valve.
Cardiovasc Res. 2012 Mar 1;93(3):480-9. doi: 10.1093/cvr/cvr337. Epub 2011 Dec 16.
7
Inhibitory role of Notch1 in calcific aortic valve disease.
PLoS One. 2011;6(11):e27743. doi: 10.1371/journal.pone.0027743. Epub 2011 Nov 16.
8
Noninvasive measurement of fetal augmentation index by fetal aortic diameter pulse and flow velocity waveforms.
Acta Obstet Gynecol Scand. 2011 Aug;90(8):839-45. doi: 10.1111/j.1600-0412.2011.01173.x. Epub 2011 Jun 14.
9
Transcriptional regulation of heart valve development and disease.
Cardiovasc Pathol. 2011 May-Jun;20(3):162-7. doi: 10.1016/j.carpath.2010.06.010. Epub 2010 Aug 11.
10
Perinatal changes in mitral and aortic valve structure and composition.
Pediatr Dev Pathol. 2010 Nov-Dec;13(6):447-58. doi: 10.2350/09-11-0749-OA.1. Epub 2010 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验