Suppr超能文献

杜父鱼(杜父鱼属)中的外胚层发育不良信号基因与表型进化

Ectodysplasin signalling genes and phenotypic evolution in sculpins (Cottus).

作者信息

Cheng Jie, Sedlazek Fritz, Altmüller Janine, Nolte Arne W

机构信息

Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, 24306 Plön, Germany Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.

Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, New York, NY, USA.

出版信息

Proc Biol Sci. 2015 Sep 22;282(1815). doi: 10.1098/rspb.2015.0746.

Abstract

Despite their deeply conserved function among vertebrates, ectodysplasin (Eda) signalling genes are involved in microevolutionary change in humans and sticklebacks. If such a dual role is common, Eda signalling genes constitute hotspots for morphological evolution. Variation in sculpin (Cottus) skin prickling and body shape resembles patterns caused by variation in Eda signalling in sticklebacks. We mapped Eda signalling genes and performed quantitative trait locus mapping in crosses between Cottus rhenanus and Cottus perifretum. A genomic region containing the Eda receptor (Edar) was strongly associated with prickling and contributed to shape. The expression of Edar in developing prickles and skeletal elements in Cottus was confirmed by in situ hybridization. Coding sequence changes between Edar alleles in C. rhenanus and C. perifretum exceeded sequence differentiation in other vertebrates. However, it is likely that additional genetic elements besides coding changes affect the phenotypic variation. Although the phenotype in a natural hybrid lineage between C. rhenanus and C. perifretum resembles C. perifretum, the respective coding Edar alleles are not fully fixed (88.6%). Hence, our results support an involvement of Eda signalling in microevolutionary changes, but imply that the Edar gene is affected by multiple evolutionary processes that vary among freshwater sculpins.

摘要

尽管外胚层发育不全蛋白(Eda)信号基因在脊椎动物中具有高度保守的功能,但它们却参与了人类和棘鱼的微进化变化。如果这种双重作用很常见,那么Eda信号基因就构成了形态进化的热点。杜父鱼(Cottus)的皮肤棘刺和体型变化类似于棘鱼中Eda信号变化所导致的模式。我们绘制了Eda信号基因图谱,并在莱茵杜父鱼(Cottus rhenanus)和围隔杜父鱼(Cottus perifretum)的杂交后代中进行了数量性状基因座定位。一个包含Eda受体(Edar)的基因组区域与棘刺强烈相关,并影响体型。通过原位杂交证实了Edar在杜父鱼发育中的棘刺和骨骼元素中的表达。莱茵杜父鱼和围隔杜父鱼的Edar等位基因之间的编码序列变化超过了其他脊椎动物的序列分化。然而,除了编码变化外,可能还有其他遗传因素影响表型变异。尽管莱茵杜父鱼和围隔杜父鱼的自然杂交后代的表型类似于围隔杜父鱼,但其各自的编码Edar等位基因并未完全固定(88.6%)。因此,我们的结果支持Eda信号参与微进化变化,但表明Edar基因受到多种进化过程的影响,这些过程在淡水杜父鱼中各不相同。

相似文献

1
Ectodysplasin signalling genes and phenotypic evolution in sculpins (Cottus).
Proc Biol Sci. 2015 Sep 22;282(1815). doi: 10.1098/rspb.2015.0746.
2
3
Transcriptome changes after genome-wide admixture in invasive sculpins (Cottus).
Mol Ecol. 2012 Oct;21(19):4797-810. doi: 10.1111/j.1365-294X.2012.05645.x. Epub 2012 May 31.
4
Complete mitochondrial genomes for , , and (Perciformes, Cottidae).
Mitochondrial DNA B Resour. 2017 Sep 18;2(2):666-668. doi: 10.1080/23802359.2017.1375870.
5
Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development.
Mol Biol Evol. 2008 May;25(5):912-28. doi: 10.1093/molbev/msn038. Epub 2008 Feb 27.
6
Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution.
Evol Dev. 2007 Mar-Apr;9(2):141-54. doi: 10.1111/j.1525-142X.2007.00145.x.
7
Copy number increases of transposable elements and protein-coding genes in an invasive fish of hybrid origin.
Mol Ecol. 2017 Sep;26(18):4712-4724. doi: 10.1111/mec.14134. Epub 2017 Apr 28.
8
[Expression patterns of ectodysplasin and ectodysplasin receptor during early dental development in zebrafish].
Hua Xi Kou Qiang Yi Xue Za Zhi. 2019 Aug 1;37(4):355-360. doi: 10.7518/hxkq.2019.04.003.

引用本文的文献

本文引用的文献

3
Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait Loci.
Genetics. 2014 May;197(1):405-20. doi: 10.1534/genetics.114.162420. Epub 2014 Mar 19.
5
The ectodysplasin pathway: from diseases to adaptations.
Trends Genet. 2014 Jan;30(1):24-31. doi: 10.1016/j.tig.2013.08.006. Epub 2013 Sep 23.
6
The genomics of incompatibility factors and sex determination in hybridizing species of Cottus (Pisces).
Heredity (Edinb). 2013 Dec;111(6):520-9. doi: 10.1038/hdy.2013.76. Epub 2013 Aug 28.
8
The Loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation.
Evolution. 2013 May;67(5):1235-50. doi: 10.1111/evo.12081. Epub 2013 Mar 21.
9
Adaptive morphological shifts to novel habitats in marine sculpin fishes.
J Evol Biol. 2013 Mar;26(3):472-82. doi: 10.1111/jeb.12088. Epub 2013 Jan 14.
10
Adaptation in the age of ecological genomics: insights from parallelism and convergence.
Trends Ecol Evol. 2011 Jun;26(6):298-306. doi: 10.1016/j.tree.2011.02.008. Epub 2011 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验