Hlawatsch Marcel, Burch Michael, Weiskopf Daniel
IEEE Trans Vis Comput Graph. 2014 Nov;20(11):1590-603. doi: 10.1109/TVCG.2014.2322594.
We present a visual representation for dynamic, weighted graphs based on the concept of adjacency lists. Two orthogonal axes are used: one for all nodes of the displayed graph, the other for the corresponding links. Colors and labels are employed to identify the nodes. The usage of color allows us to scale the visualization to single pixel level for large graphs. In contrast to other techniques, we employ an asymmetric mapping that results in an aligned and compact representation of links. Our approach is independent of the specific properties of the graph to be visualized, but certain graphs and tasks benefit from the asymmetry. As we show in our results, the strength of our technique is the visualization of dynamic graphs. In particular, sparse graphs benefit from the compact representation. Furthermore, our approach uses visual encoding by size to represent weights and therefore allows easy quantification and comparison. We evaluate our approach in a quantitative user study that confirms the suitability for dynamic and weighted graphs. Finally, we demonstrate our approach for two examples of dynamic graphs.
我们基于邻接表的概念提出了一种用于动态加权图的可视化表示方法。使用了两个正交轴:一个用于显示图的所有节点,另一个用于相应的链接。颜色和标签用于标识节点。颜色的使用使我们能够将大型图的可视化缩放到单个像素级别。与其他技术不同,我们采用了一种非对称映射,从而实现链接的对齐和紧凑表示。我们的方法独立于要可视化的图的特定属性,但某些图和任务会受益于这种不对称性。正如我们在结果中所示,我们技术的优势在于动态图的可视化。特别是,稀疏图受益于紧凑表示。此外,我们的方法使用大小视觉编码来表示权重,因此便于进行量化和比较。我们在一项定量用户研究中评估了我们的方法,该研究证实了其适用于动态加权图。最后,我们针对两个动态图示例展示了我们的方法。