Wang Xiaohong, Schröder Heinz C, Müller Werner E G
ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
Biotechnol J. 2016 Jan;11(1):11-30. doi: 10.1002/biot.201500168. Epub 2015 Sep 10.
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.
在动物体内,细胞内区室从细胞摄取的代谢物(如葡萄糖)中生成富含能量的分子,如三磷酸腺苷(ATP)。最近的研究结果表明,无机多聚磷酸盐(polyP)可以提供一种细胞外能量运输和传递系统。这些由高能磷酸酐键连接的多个磷酸单元的聚合物,利用血小板作为运输载体到达其靶细胞。在这篇综述中,概述了多聚磷酸盐如何影响细胞代谢。讨论了多聚磷酸盐以双重方式影响细胞活性:(i)作为一种代谢燃料,通过细胞外空间传递代谢能量;(ii)作为一种信号分子,增强线粒体中的能量/ATP生成。多聚磷酸盐触发了几种代谢途径,其中包括在骨细胞上进行生物矿化/羟基磷灰石形成。多聚磷酸盐在血小板中的积累使得该聚合物能够在细胞外空间进行长距离运输。多聚磷酸盐作为代谢燃料和信号分子的发现,引发了将多聚磷酸盐封装到纳米颗粒中的新技术的发展。它们通过受体介导的内吞作用促进细胞对该聚合物的摄取,并为治疗与能量代谢偏差或线粒体功能障碍相关的代谢疾病开发新策略。