Suppr超能文献

利用来自多个结直肠癌数据集的组合基因特征进行连接性图谱分析,确定了包括现有化疗药物在内的候选药物。

Connectivity mapping using a combined gene signature from multiple colorectal cancer datasets identified candidate drugs including existing chemotherapies.

作者信息

Wen Qing, O'Reilly Paul, Dunne Philip D, Lawler Mark, Van Schaeybroeck Sandra, Salto-Tellez Manuel, Hamilton Peter, Zhang Shu-Dong

出版信息

BMC Syst Biol. 2015;9 Suppl 5(Suppl 5):S4. doi: 10.1186/1752-0509-9-S5-S4. Epub 2015 Sep 1.

Abstract

BACKGROUND

While the discovery of new drugs is a complex, lengthy and costly process, identifying new uses for existing drugs is a cost-effective approach to therapeutic discovery. Connectivity mapping integrates gene expression profiling with advanced algorithms to connect genes, diseases and small molecule compounds and has been applied in a large number of studies to identify potential drugs, particularly to facilitate drug repurposing. Colorectal cancer (CRC) is a commonly diagnosed cancer with high mortality rates, presenting a worldwide health problem. With the advancement of high throughput omics technologies, a number of large scale gene expression profiling studies have been conducted on CRCs, providing multiple datasets in gene expression data repositories. In this work, we systematically apply gene expression connectivity mapping to multiple CRC datasets to identify candidate therapeutics to this disease.

RESULTS

We developed a robust method to compile a combined gene signature for colorectal cancer across multiple datasets. Connectivity mapping analysis with this signature of 148 genes identified 10 candidate compounds, including irinotecan and etoposide, which are chemotherapy drugs currently used to treat CRCs. These results indicate that we have discovered high quality connections between the CRC disease state and the candidate compounds, and that the gene signature we created may be used as a potential therapeutic target in treating the disease. The method we proposed is highly effective in generating quality gene signature through multiple datasets; the publication of the combined CRC gene signature and the list of candidate compounds from this work will benefit both cancer and systems biology research communities for further development and investigations.

摘要

背景

虽然新药研发是一个复杂、漫长且成本高昂的过程,但确定现有药物的新用途是一种具有成本效益的治疗发现方法。连接性图谱将基因表达谱分析与先进算法相结合,以关联基因、疾病和小分子化合物,并且已在大量研究中应用于识别潜在药物,特别是促进药物再利用。结直肠癌(CRC)是一种常见的高死亡率癌症,是一个全球性的健康问题。随着高通量组学技术的发展,已经对结直肠癌进行了多项大规模基因表达谱研究,在基因表达数据存储库中提供了多个数据集。在这项工作中,我们系统地将基因表达连接性图谱应用于多个CRC数据集,以识别针对该疾病的候选治疗药物。

结果

我们开发了一种强大的方法,用于在多个数据集中编译结直肠癌的组合基因特征。使用这个由148个基因组成的特征进行连接性图谱分析,识别出10种候选化合物,包括伊立替康和依托泊苷,它们是目前用于治疗结直肠癌的化疗药物。这些结果表明,我们已经发现了结直肠癌疾病状态与候选化合物之间的高质量关联,并且我们创建的基因特征可能用作治疗该疾病的潜在治疗靶点。我们提出的方法在通过多个数据集生成高质量基因特征方面非常有效;这项工作中组合的CRC基因特征和候选化合物列表的公布将使癌症和系统生物学研究界受益,以进行进一步的开发和研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5392/4565135/5cb8bf346916/1752-0509-9-S5-S4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验