Suppr超能文献

cudaMap:一个用于基因表达连接性映射的 GPU 加速程序。

cudaMap: a GPU accelerated program for gene expression connectivity mapping.

机构信息

Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast (QUB), Belfast, Northern Ireland, UK.

出版信息

BMC Bioinformatics. 2013 Oct 11;14:305. doi: 10.1186/1471-2105-14-305.

Abstract

BACKGROUND

Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping.

RESULTS

cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance.

CONCLUSION

Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.

摘要

背景

现代癌症研究通常涉及大型数据集和复杂的统计技术。这些因素共同给分析带来了沉重的计算负担,而这往往伴随着数据可访问性的问题。连接性映射是一种先进的生物信息学和计算技术,专门用于通过差异基因表达分析进行治疗发现和药物再利用。在普通的台式 PC 上,使用 sscMap(一种流行的基于标准 CPU 的 Java 应用程序)完成单个基因特征的连接性映射任务通常需要超过 2 小时。在这里,我们描述了新软件 cudaMap,它使用 CUDA C/C++ 实现,利用 NVIDIA GPU 的计算能力,大大缩短了连接性映射的处理时间。

结果

当使用 NVIDIA Tesla C2050 GPU 时,cudaMap 可以在 30 多秒内从相同的特征中识别候选治疗药物。以前需要几天时间才能完成的多个基因特征的分析结果,现在可以在短短 10 分钟内获得,极大地促进了高通量候选治疗药物的发现。随着统计显著性的高精度评估计算负载的增加,我们能够在 GPU 辅助性能和 CPU 执行之间显示出显著的速度差异。

结论

新兴的“组学”技术不断增加生物医学研究各个领域的数据量和信息量。利用 GPU 的多核功能是本地加速计算的主要途径。cudaMap 通过快速执行日益需要的繁重连接性映射任务,为候选治疗药物的发现做出了重要贡献。cudaMap 是开源的,可以从 http://purl.oclc.org/NET/cudaMap 自由下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f84/3852931/a61a4533eb24/1471-2105-14-305-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验