Suppr超能文献

海洋模式输出与参考数据的对比的可视化分析:使用聚类集成检测和分析地球物理过程。

Visual Analytics for Comparison of Ocean Model Output with Reference Data: Detecting and Analyzing Geophysical Processes Using Clustering Ensembles.

出版信息

IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1893-902. doi: 10.1109/TVCG.2014.2346751.

Abstract

Researchers assess the quality of an ocean model by comparing its output to that of a previous model version or to observations. One objective of the comparison is to detect and to analyze differences and similarities between both data sets regarding geophysical processes, such as particular ocean currents. This task involves the analysis of thousands or hundreds of thousands of geographically referenced temporal profiles in the data. To cope with the amount of data, modelers combine aggregation of temporal profiles to single statistical values with visual comparison. Although this strategy is based on experience and a well-grounded body of expert knowledge, our discussions with domain experts have shown that it has two limitations: (1) using a single statistical measure results in a rather limited scope of the comparison and in significant loss of information, and (2) the decisions modelers have to make in the process may lead to important aspects being overlooked. In this article, we propose a Visual Analytics approach that broadens the scope of the analysis, reduces subjectivity, and facilitates comparison of the two data sets. It comprises three steps: First, it allows modelers to consider many aspects of the temporal behavior of geophysical processes by conducting multiple clusterings of the temporal profiles in each data set. Modelers can choose different features describing the temporal behavior of relevant processes, clustering algorithms, and parameterizations. Second, our approach consolidates the clusterings of one data set into a single clustering via a clustering ensembles approach. The consolidated clustering presents an overview of the geospatial distribution of temporal behavior in a data set. Third, a visual interface allows modelers to compare the two consolidated clusterings. It enables them to detect clusters of temporal profiles that represent geophysical processes and to analyze differences and similarities between two data sets. This work is the result of a close collaboration with ocean modelers. They employed our concept to find aspects of improvement in a new version of the Ocean Model for Circulation and Tides (OMCT).

摘要

研究人员通过将模型的输出与之前的模型版本或观测结果进行比较来评估海洋模型的质量。比较的一个目标是检测和分析两个数据集之间在地球物理过程(如特定的海洋流)方面的差异和相似性。这项任务涉及到对数据中数千或数十万条地理参考时间剖面的分析。为了处理大量的数据,建模人员将时间剖面的聚合与单个统计值与视觉比较相结合。尽管这种策略是基于经验和充分的专家知识,但我们与领域专家的讨论表明,它有两个局限性:(1)使用单个统计度量会导致比较范围相当有限,并导致大量信息丢失;(2)建模人员在处理过程中必须做出的决策可能会导致重要方面被忽视。在本文中,我们提出了一种可视化分析方法,该方法可以拓宽分析范围,减少主观性,并便于比较两个数据集。它包括三个步骤:首先,它允许建模人员通过对每个数据集中的时间剖面进行多次聚类来考虑地球物理过程时间行为的许多方面。建模人员可以选择不同的特征来描述相关过程的时间行为、聚类算法和参数化。其次,我们的方法通过聚类集成方法将一个数据集中的聚类合并为一个聚类。合并后的聚类呈现了数据集中时间行为的地理空间分布的概述。最后,一个可视化界面允许建模人员比较两个合并的聚类。它使他们能够检测表示地球物理过程的时间剖面聚类,并分析两个数据集之间的差异和相似性。这项工作是与海洋建模人员密切合作的结果。他们采用了我们的概念,在一个新的海洋环流和潮汐模型 (OMCT) 版本中找到了改进的方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验