Suppr超能文献

基于链接的聚类集成问题方法。

A Link-Based Approach to the Cluster Ensemble Problem.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Dec;33(12):2396-409. doi: 10.1109/TPAMI.2011.84. Epub 2011 May 12.

Abstract

Cluster ensembles have recently emerged as a powerful alternative to standard cluster analysis, aggregating several input data clusterings to generate a single output clustering, with improved robustness and stability. From the early work, these techniques held great promise; however, most of them generate the final solution based on incomplete information of a cluster ensemble. The underlying ensemble-information matrix reflects only cluster-data point relations, while those among clusters are generally overlooked. This paper presents a new link-based approach to improve the conventional matrix. It achieves this using the similarity between clusters that are estimated from a link network model of the ensemble. In particular, three new link-based algorithms are proposed for the underlying similarity assessment. The final clustering result is generated from the refined matrix using two different consensus functions of feature-based and graph-based partitioning. This approach is the first to address and explicitly employ the relationship between input partitions, which has not been emphasized by recent studies of matrix refinement. The effectiveness of the link-based approach is empirically demonstrated over 10 data sets (synthetic and real) and three benchmark evaluation measures. The results suggest the new approach is able to efficiently extract information embedded in the input clusterings, and regularly illustrate higher clustering quality in comparison to several state-of-the-art techniques.

摘要

聚类集成最近作为一种强大的替代标准聚类分析的方法出现,它聚合了几个输入数据聚类,以生成单个输出聚类,从而提高了鲁棒性和稳定性。从早期的工作来看,这些技术具有很大的潜力;然而,它们中的大多数都是基于聚类集成的不完整信息生成最终解决方案的。基础的集成信息矩阵仅反映了聚类-数据点关系,而聚类之间的关系通常被忽略。本文提出了一种新的基于链接的方法来改进传统的矩阵。它通过使用从集合的链接网络模型估计的聚类之间的相似性来实现这一点。特别是,提出了三种新的基于链接的算法来进行基础相似性评估。最终的聚类结果是从使用基于特征和基于图的分区的两种不同共识函数的改进矩阵中生成的。这种方法是第一个解决并明确利用输入分区之间关系的方法,这在最近的矩阵细化研究中没有得到强调。基于链接的方法在 10 个数据集(合成和真实)和三个基准评估指标上的实证结果表明了其有效性。结果表明,新方法能够有效地提取输入聚类中嵌入的信息,并经常显示出比几种最先进的技术更高的聚类质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验