Nepomuceno-Chamorro Isabel A, Marquez-Chamorro Alfonso, Aguilar-Ruiz Jesus S
IEEE/ACM Trans Comput Biol Bioinform. 2015 Jul-Aug;12(4):823-4. doi: 10.1109/TCBB.2014.2385702.
The Regression Network plugin for Cytoscape (RegNetC) implements the RegNet algorithm for the inference of transcriptional association network from gene expression profiles. This algorithm is a model tree-based method to detect the relationship between each gene and the remaining genes simultaneously instead of analyzing individually each pair of genes as correlation-based methods do. Model trees are a very useful technique to estimate the gene expression value by regression models and favours localized similarities over more global similarity, which is one of the major drawbacks of correlation-based methods. Here, we present an integrated software suite, named RegNetC, as a Cytoscape plugin that can operate on its own as well. RegNetC facilitates, according to user-defined parameters, the resulted transcriptional gene association network in .sif format for visualization, analysis and interoperates with other Cytoscape plugins, which can be exported for publication figures. In addition to the network, the RegNetC plugin also provides the quantitative relationships between genes expression values of those genes involved in the inferred network, i.e., those defined by the regression models.
用于Cytoscape的回归网络插件(RegNetC)实现了RegNet算法,用于从基因表达谱推断转录关联网络。该算法是一种基于模型树的方法,可同时检测每个基因与其余基因之间的关系,而不是像基于相关性的方法那样单独分析每对基因。模型树是通过回归模型估计基因表达值的一种非常有用的技术,它更倾向于局部相似性而非更全局的相似性,这是基于相关性方法的主要缺点之一。在此,我们展示了一个名为RegNetC的集成软件套件,它作为Cytoscape插件,也可以独立运行。RegNetC根据用户定义的参数,以.sif格式生成转录基因关联网络,便于可视化、分析,并与其他Cytoscape插件进行互操作,这些网络可导出用于发表图表。除了网络之外,RegNetC插件还提供了推断网络中所涉及基因的基因表达值之间的定量关系,即由回归模型定义的那些关系。