Grigoryeva Lyudmila, Henriques Julie, Larger Laurent, Ortega Juan-Pablo
Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, UFR des Sciences et Techniques. 16, route de Gray. F-25030 Besançon cedex. France.
Cegos Deployment. 11, rue Denis Papin. F-25000 Besançon.
Sci Rep. 2015 Sep 11;5:12858. doi: 10.1038/srep12858.
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
储层计算是一种最近引入的受大脑启发的机器学习范式,在处理经验数据方面具有出色的性能。我们专注于一种基于时间延迟的特定类型的储层计算机,这种计算机已通过光学和电子系统进行了物理实现,并展现出了前所未有的数据处理速度。储层计算因其相关训练方案的简便性而闻名,但也因其性能对架构参数存在问题的敏感性而为人所知。本文探讨了储层设计问题,这仍然是这种信息处理方案适用性方面的最大挑战。更具体地说,我们利用关于最优储层工作模式的可用信息来构建储层参数与其性能之间的功能联系。该函数用于探索设备的各种特性并选择最优的储层架构,从而取代了迄今为止文献中使用的繁琐且耗时的参数扫描。