Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria.
Neural Comput. 2010 May;22(5):1272-311. doi: 10.1162/neco.2009.01-09-947.
Reservoir computing (RC) systems are powerful models for online computations on input sequences. They consist of a memoryless readout neuron that is trained on top of a randomly connected recurrent neural network. RC systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work indicated a fundamental difference in the behavior of these two implementations of the RC idea. The performance of an RC system built from binary neurons seems to depend strongly on the network connectivity structure. In networks of analog neurons, such clear dependency has not been observed. In this letter, we address this apparent dichotomy by investigating the influence of the network connectivity (parameterized by the neuron in-degree) on a family of network models that interpolates between analog and binary networks. Our analyses are based on a novel estimation of the Lyapunov exponent of the network dynamics with the help of branching process theory, rank measures that estimate the kernel quality and generalization capabilities of recurrent networks, and a novel mean field predictor for computational performance. These analyses reveal that the phase transition between ordered and chaotic network behavior of binary circuits qualitatively differs from the one in analog circuits, leading to differences in the integration of information over short and long timescales. This explains the decreased computational performance observed in binary circuits that are densely connected. The mean field predictor is also used to bound the memory function of recurrent circuits of binary neurons.
储层计算 (RC) 系统是对输入序列进行在线计算的强大模型。它们由一个无记忆读出神经元组成,该神经元在随机连接的递归神经网络之上进行训练。RC 系统通常有两种形式:在递归电路中使用模拟或二进制(尖峰)神经元。以前的工作表明,RC 思想的这两种实现方式的行为存在根本差异。由二进制神经元构成的 RC 系统的性能似乎强烈依赖于网络连接结构。在模拟神经元的网络中,没有观察到这种明显的依赖性。在这封信中,我们通过研究网络连接(由神经元入度参数化)对一系列在模拟和二进制网络之间插值的网络模型的影响来解决这种明显的二分法。我们的分析基于使用分支过程理论对网络动态的李雅普诺夫指数进行新的估计、用于估计递归网络核质量和泛化能力的秩测度,以及用于计算性能的新的平均场预测器。这些分析表明,二进制电路中有序和混沌网络行为之间的相变在定性上不同于模拟电路中的相变,导致在短时间和长时间尺度上信息的整合存在差异。这解释了在密集连接的二进制电路中观察到的计算性能下降。平均场预测器也用于限制二进制神经元的递归电路的记忆函数。