Suppr超能文献

5'-腺苷酸激活蛋白激酶α2通过调节丙酮酸脱氢酶激酶4来控制运动后恢复期间的底物代谢。

5'-AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4.

作者信息

Fritzen Andreas Maechel, Lundsgaard Anne-Marie, Jeppesen Jacob, Christiansen Mette Landau Brabaek, Biensø Rasmus, Dyck Jason R B, Pilegaard Henriette, Kiens Bente

机构信息

Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, University of Copenhagen, Copenhagen, Denmark.

Danish Diabetes Academy, Odense University Hospital, Odense, Denmark.

出版信息

J Physiol. 2015 Nov 1;593(21):4765-80. doi: 10.1113/JP270821.

Abstract

It is well known that exercise has a major impact on substrate metabolism for many hours after exercise. However, the regulatory mechanisms increasing lipid oxidation and facilitating glycogen resynthesis in the post-exercise period are unknown. To address this, substrate oxidation was measured after prolonged exercise and during the following 6 h post-exercise in 5´-AMP activated protein kinase (AMPK) α2 and α1 knock-out (KO) and wild-type (WT) mice with free access to food. Substrate oxidation was similar during exercise at the same relative intensity between genotypes. During post-exercise recovery, a lower lipid oxidation (P < 0.05) and higher glucose oxidation were observed in AMPKα2 KO (respiratory exchange ratio (RER) = 0.84 ± 0.02) than in WT and AMPKα1 KO (average RER = 0.80 ± 0.01) without genotype differences in muscle malonyl-CoA or free-carnitine concentrations. A similar increase in muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA expression in WT and AMPKα2 KO was observed following exercise, which is consistent with AMPKα2 deficiency not affecting the exercise-induced activation of the PDK4 transcriptional regulators HDAC4 and SIRT1. Interestingly, PDK4 protein content increased (63%, P < 0.001) in WT but remained unchanged in AMPKα2 KO. In accordance with the lack of increase in PDK4 protein content, lower (P < 0.01) inhibitory pyruvate dehydrogenase (PDH)-E1α Ser(293) phosphorylation was observed in AMPKα2 KO muscle compared to WT. These findings indicate that AMPKα2 regulates muscle metabolism post-exercise through inhibition of the PDH complex and hence glucose oxidation, subsequently creating conditions for increased fatty acid oxidation.

摘要

众所周知,运动对运动后数小时的底物代谢有重大影响。然而,运动后增加脂质氧化和促进糖原再合成的调节机制尚不清楚。为了解决这个问题,我们在长时间运动后以及运动后的接下来6小时内,对5'-AMP激活蛋白激酶(AMPK)α2和α1基因敲除(KO)以及野生型(WT)小鼠(可自由进食)的底物氧化进行了测量。在相同相对强度的运动期间,不同基因型之间的底物氧化情况相似。在运动后恢复期间,与野生型和AMPKα1基因敲除小鼠(平均呼吸交换率(RER)= 0.80±0.01)相比,AMPKα2基因敲除小鼠(呼吸交换率(RER)= 0.84±0.02)的脂质氧化较低(P < 0.05),葡萄糖氧化较高,且肌肉丙二酰辅酶A或游离肉碱浓度无基因型差异。运动后,野生型和AMPKα2基因敲除小鼠的肌肉丙酮酸脱氢酶激酶4(PDK4)mRNA表达有类似增加,这与AMPKα2缺乏不影响运动诱导的PDK4转录调节因子HDAC4和SIRT1的激活一致。有趣的是,野生型小鼠的PDK4蛋白含量增加(63%,P < 0.001),而AMPKα2基因敲除小鼠的PDK4蛋白含量保持不变。与PDK4蛋白含量未增加一致,与野生型相比,AMPKα2基因敲除小鼠肌肉中丙酮酸脱氢酶(PDH)-E1α Ser(293)的抑制性磷酸化较低(P < 0.01)。这些发现表明,AMPKα2通过抑制PDH复合物从而抑制葡萄糖氧化来调节运动后的肌肉代谢,随后为增加脂肪酸氧化创造条件。

相似文献

2
Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
FASEB J. 2005 Jul;19(9):1146-8. doi: 10.1096/fj.04-3144fje. Epub 2005 May 5.
3
Lack of AMPKalpha2 enhances pyruvate dehydrogenase activity during exercise.
Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1242-9. doi: 10.1152/ajpendo.00382.2007. Epub 2007 Aug 21.
4
PGC-1alpha increases PDH content but does not change acute PDH regulation in mouse skeletal muscle.
Am J Physiol Regul Integr Comp Physiol. 2010 Nov;299(5):R1350-9. doi: 10.1152/ajpregu.00400.2010. Epub 2010 Aug 18.
5
Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.
Am J Physiol Endocrinol Metab. 2006 Mar;290(3):E583-90. doi: 10.1152/ajpendo.00395.2005. Epub 2005 Oct 25.
6
Role of adenosine 5'-monophosphate-activated protein kinase in α-linolenic acid-induced intestinal lipid metabolism.
Br J Nutr. 2015 Sep 28;114(6):866-72. doi: 10.1017/S0007114515002391. Epub 2015 Aug 13.
7
AMP-activated protein kinase (AMPK) α2 subunit mediates glycolysis in postmortem skeletal muscle.
Meat Sci. 2013 Nov;95(3):536-41. doi: 10.1016/j.meatsci.2013.05.025. Epub 2013 May 25.
8
Pyruvate dehydrogenase kinase-4 contributes to the recirculation of gluconeogenic precursors during postexercise glycogen recovery.
Am J Physiol Regul Integr Comp Physiol. 2014 Jan 15;306(2):R102-7. doi: 10.1152/ajpregu.00150.2013. Epub 2013 Dec 4.
9
AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.
J Physiol. 2008 Dec 1;586(23):5819-31. doi: 10.1113/jphysiol.2008.159814. Epub 2008 Oct 9.

引用本文的文献

1
Cellular Feimin enhances exercise performance by suppressing muscle thermogenesis.
Nat Metab. 2025 Jan;7(1):84-101. doi: 10.1038/s42255-024-01176-8. Epub 2025 Jan 2.
4
Signaling pathways regulated by natural active ingredients in the fight against exercise fatigue-a review.
Front Pharmacol. 2023 Dec 14;14:1269878. doi: 10.3389/fphar.2023.1269878. eCollection 2023.
5
Skeletal muscle proteins involved in fatty acid transport influence fatty acid oxidation rates observed during exercise.
Pflugers Arch. 2023 Sep;475(9):1061-1072. doi: 10.1007/s00424-023-02843-7. Epub 2023 Jul 18.
6
Exercise metabolism and adaptation in skeletal muscle.
Nat Rev Mol Cell Biol. 2023 Sep;24(9):607-632. doi: 10.1038/s41580-023-00606-x. Epub 2023 May 24.
8
Acute exercise dynamically modulates the hepatic mitochondrial proteome.
Mol Omics. 2022 Oct 31;18(9):840-852. doi: 10.1039/d2mo00143h.
9
AMPK and the Adaptation to Exercise.
Annu Rev Physiol. 2022 Feb 10;84:209-227. doi: 10.1146/annurev-physiol-060721-095517.

本文引用的文献

1
AMPKα is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice.
FASEB J. 2015 May;29(5):1725-38. doi: 10.1096/fj.14-266650. Epub 2015 Jan 21.
2
Pyruvate dehydrogenase kinase-4 contributes to the recirculation of gluconeogenic precursors during postexercise glycogen recovery.
Am J Physiol Regul Integr Comp Physiol. 2014 Jan 15;306(2):R102-7. doi: 10.1152/ajpregu.00150.2013. Epub 2013 Dec 4.
4
LKB1 regulates lipid oxidation during exercise independently of AMPK.
Diabetes. 2013 May;62(5):1490-9. doi: 10.2337/db12-1160. Epub 2013 Jan 24.
5
NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise.
Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E308-21. doi: 10.1152/ajpendo.00054.2012. Epub 2012 Mar 20.
6
Role of pyruvate dehydrogenase kinase 4 in regulating PDH activation during acute muscle contraction.
Appl Physiol Nutr Metab. 2012 Feb;37(1):48-52. doi: 10.1139/h11-136. Epub 2011 Dec 23.
8
Calorie restriction: is AMPK a key sensor and effector?
Physiology (Bethesda). 2011 Aug;26(4):214-24. doi: 10.1152/physiol.00010.2011.
10
PGC-1alpha increases PDH content but does not change acute PDH regulation in mouse skeletal muscle.
Am J Physiol Regul Integr Comp Physiol. 2010 Nov;299(5):R1350-9. doi: 10.1152/ajpregu.00400.2010. Epub 2010 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验