School of Mathematics and Statistics , Northeast Normal University , Changchun 130024, People's Republic of China.
Department of Electrical and Electronic Engineering , Imperial College London , London SW7 2AZ, UK.
R Soc Open Sci. 2015 Aug 26;2(8):150255. doi: 10.1098/rsos.150255. eCollection 2015 Aug.
Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis.
四元数导数仅存在于非常有限的一类解析(正则)函数中;然而,在许多应用中,感兴趣的函数是实值的,因此不是解析的,一个典型的例子是标准的实均方误差目标函数。最近的 HR 微积分是向前迈出的一步,它提供了一种计算四元数变量的解析和非解析函数的导数和梯度的方法;然而,由于缺乏严格的乘积和链式规则,HR 微积分在复杂的优化问题中变得繁琐,这是四元数代数不可交换性的结果。为了解决这个问题,我们引入了广义 HR(GHR)导数,它在一般正交系中使用四元数旋转,并提供了一般函数的四元数导数的左右版本。GHR 微积分还解决了四元数域中乘积和链式规则、中值定理和泰勒定理的长期存在的问题。所提出的 GHR 微积分的核心是四元数旋转,这使得将该原理扩展到非交换环境中的其他泛函微积分成为可能。统计学习理论和自适应信号处理中的示例支持了这种分析。