Suppr超能文献

四元数量子力学基础。

Foundations of the Quaternion Quantum Mechanics.

作者信息

Danielewski Marek, Sapa Lucjan

机构信息

Faculty of Materials Science & Ceramics, AGH UST, Mickiewicza 30, 30-059 Kraków, Poland.

Faculty of Applied Mathematics, AGH UST, Mickiewicza 30, 30-059 Kraków, Poland.

出版信息

Entropy (Basel). 2020 Dec 17;22(12):1424. doi: 10.3390/e22121424.

Abstract

We show that quaternion quantum mechanics has well-founded mathematical roots and can be derived from the model of the elastic continuum by French mathematician Augustin Cauchy, i.e., it can be regarded as representing the physical reality of elastic continuum. Starting from the Cauchy theory (classical balance equations for isotropic Cauchy-elastic material) and using the Hamilton quaternion algebra, we present a rigorous derivation of the quaternion form of the non- and relativistic wave equations. The family of the wave equations and the Poisson equation are a straightforward consequence of the quaternion representation of the Cauchy model of the elastic continuum. This is the most general kind of quantum mechanics possessing the same kind of calculus of assertions as conventional quantum mechanics. The problem of the Schrödinger equation, where imaginary '' should emerge, is solved. This interpretation is a serious attempt to describe the ontology of quantum mechanics, and demonstrates that, besides Bohmian mechanics, the complete ontological interpretations of quantum theory exists. The model can be generalized and falsified. To ensure this theory to be true, we specified problems, allowing exposing its falsity.

摘要

我们证明了四元数量子力学有着坚实的数学根基,并且可以从法国数学家奥古斯丁·柯西提出的弹性连续统模型推导得出,也就是说,它可以被视为代表了弹性连续统的物理实在。从柯西理论(各向同性柯西弹性材料的经典平衡方程)出发,利用哈密顿四元数代数,我们给出了非相对论和相对论波动方程四元数形式的严格推导。波动方程族和泊松方程是弹性连续统柯西模型四元数表示的直接结果。这是最一般的量子力学类型,拥有与传统量子力学相同类型的断言演算。薛定谔方程中虚数“i”应该出现的问题得到了解决。这种解释是对量子力学本体论进行描述的一次认真尝试,并且表明,除了玻姆力学之外,还存在量子理论的完整本体论解释。该模型可以被推广和证伪。为了确保这个理论是正确的,我们明确了一些问题,以便能够揭示其错误之处。

相似文献

1
Foundations of the Quaternion Quantum Mechanics.
Entropy (Basel). 2020 Dec 17;22(12):1424. doi: 10.3390/e22121424.
2
On Ontological Alternatives to Bohmian Mechanics.
Entropy (Basel). 2018 Jun 19;20(6):474. doi: 10.3390/e20060474.
3
Molecular symmetry with quaternions.
Spectrochim Acta A Mol Biomol Spectrosc. 2001 Sep 1;57(10):1919-30. doi: 10.1016/s1386-1425(01)00477-2.
4
Quantum Mechanics can be understood through stochastic optimization on spacetimes.
Sci Rep. 2019 Dec 27;9(1):19984. doi: 10.1038/s41598-019-56357-3.
5
Quaternion Spiking and Quaternion Quantum Neural Networks: Theory and Applications.
Int J Neural Syst. 2021 Feb;31(2):2050059. doi: 10.1142/S0129065720500598. Epub 2020 Sep 16.
6
Bohmian trajectories of the time-oscillating Schrödinger equations.
Chaos. 2021 Oct;31(10):101101. doi: 10.1063/5.0067645.
7
Enabling quaternion derivatives: the generalized HR calculus.
R Soc Open Sci. 2015 Aug 26;2(8):150255. doi: 10.1098/rsos.150255. eCollection 2015 Aug.
9
An Information Ontology for the Process Algebra Model of Non-Relativistic Quantum Mechanics.
Entropy (Basel). 2020 Jan 23;22(2):136. doi: 10.3390/e22020136.
10
Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics.
J Chem Phys. 2006 Dec 21;125(23):231103. doi: 10.1063/1.2400851.

引用本文的文献

1
An Information-Theoretic Perspective on Proper Quaternion Variational Autoencoders.
Entropy (Basel). 2021 Jul 3;23(7):856. doi: 10.3390/e23070856.

本文引用的文献

1
Quaternionic quantum field theory.
Phys Rev Lett. 1985 Aug 19;55(8):783-786. doi: 10.1103/PhysRevLett.55.783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验