Suppr超能文献

相似文献

2
How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes.
Nucleic Acids Res. 2012 Sep;40(16):8144-54. doi: 10.1093/nar/gks548. Epub 2012 Jun 19.
4
Characterization of the functional domains of Escherichia coli RNase II.
J Mol Biol. 2006 Jul 28;360(5):921-33. doi: 10.1016/j.jmb.2006.05.043. Epub 2006 Jun 5.
6
Structural insights into RNA unwinding and degradation by RNase R.
Nucleic Acids Res. 2017 Nov 16;45(20):12015-12024. doi: 10.1093/nar/gkx880.
7
Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization.
J Biol Chem. 2002 Dec 20;277(51):50155-9. doi: 10.1074/jbc.M207706200. Epub 2002 Oct 2.
8
The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization.
RNA. 2007 Mar;13(3):317-27. doi: 10.1261/rna.220407. Epub 2007 Jan 22.
9
Substrate recognition and catalysis by the exoribonuclease RNase R.
J Biol Chem. 2006 Oct 6;281(40):29769-75. doi: 10.1074/jbc.M606744200. Epub 2006 Aug 7.
10
Identification of a potent DNase activity associated with RNase T of Escherichia coli.
J Biol Chem. 1998 Dec 25;273(52):35126-31. doi: 10.1074/jbc.273.52.35126.

引用本文的文献

2
Deep sequencing of tRNA's 3'-termini sheds light on CCA-tail integrity and maturation.
RNA. 2020 Feb;26(2):199-208. doi: 10.1261/rna.072330.119. Epub 2019 Nov 12.
3
Bacterial ribonucleases and their roles in RNA metabolism.
Crit Rev Biochem Mol Biol. 2019 Jun;54(3):242-300. doi: 10.1080/10409238.2019.1651816.
4
Structural insights into the duplex DNA processing of TREX2.
Nucleic Acids Res. 2018 Dec 14;46(22):12166-12176. doi: 10.1093/nar/gky970.
5
Examining tRNA 3'-ends in : teamwork between CCA-adding enzyme, RNase T, and RNase R.
RNA. 2018 Mar;24(3):361-370. doi: 10.1261/rna.064436.117. Epub 2017 Nov 27.
6
Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5.
Genes Dev. 2016 Nov 1;30(21):2391-2403. doi: 10.1101/gad.291377.116. Epub 2016 Nov 10.

本文引用的文献

2
Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways.
PLoS Biol. 2014 Mar 4;12(3):e1001803. doi: 10.1371/journal.pbio.1001803. eCollection 2014 Mar.
3
How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes.
Nucleic Acids Res. 2012 Sep;40(16):8144-54. doi: 10.1093/nar/gks548. Epub 2012 Jun 19.
4
Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation.
Nat Chem Biol. 2011 Apr;7(4):236-43. doi: 10.1038/nchembio.524. Epub 2011 Feb 13.
5
Nucleases: diversity of structure, function and mechanism.
Q Rev Biophys. 2011 Feb;44(1):1-93. doi: 10.1017/S0033583510000181. Epub 2010 Sep 21.
6
Origins of specificity in protein-DNA recognition.
Annu Rev Biochem. 2010;79:233-69. doi: 10.1146/annurev-biochem-060408-091030.
7
Crystal structure of CRN-4: implications for domain function in apoptotic DNA degradation.
Mol Cell Biol. 2009 Jan;29(2):448-57. doi: 10.1128/MCB.01006-08. Epub 2008 Nov 3.
8
The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partnering.
J Biol Chem. 2007 Apr 6;282(14):10537-43. doi: 10.1074/jbc.M700039200. Epub 2007 Feb 9.
9
Protein-RNA interactions: structural analysis and functional classes.
Proteins. 2007 Mar 1;66(4):903-11. doi: 10.1002/prot.21211.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验