Rodriguez Roberto A, Yu Lili, Chen Liao Y
Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249 USA.
J Chem Theory Comput. 2015 Sep 8;11(9):4427-4438. doi: 10.1021/acs.jctc.5b00340.
Computing protein-protein association affinities is one of the fundamental challenges in computational biophysics/biochemistry. The overwhelming amount of statistics in the phase space of very high dimensions cannot be sufficiently sampled even with today's high-performance computing power. In this article, we extend a potential of mean force (PMF)-based approach, the hybrid steered molecular dynamics (hSMD) approach we developed for ligand-protein binding, to protein-protein association problems. For a protein complex consisting of two protomers, P1 and P2, we choose m (≥3) segments of P1 whose m centers of mass are to be steered in a chosen direction and n (≥3) segments of P2 whose n centers of mass are to be steered in the opposite direction. The coordinates of these m + n centers constitute a phase space of 3(m + n) dimensions (3(m + n)D). All other degrees of freedom of the proteins, ligands, solvents, and solutes are freely subject to the stochastic dynamics of the all-atom model system. Conducting SMD along a line in this phase space, we obtain the 3(m + n)D PMF difference between two chosen states: one single state in the associated state ensemble and one single state in the dissociated state ensemble. This PMF difference is the first of four contributors to the protein-protein association energy. The second contributor is the 3(m + n - 1)D partial partition in the associated state accounting for the rotations and fluctuations of the (m + n - 1) centers while fixing one of the m + n centers of the P1-P2 complex. The two other contributors are the 3(m - 1)D partial partition of P1 and the 3(n - 1)D partial partition of P2 accounting for the rotations and fluctuations of their m - 1 or n - 1 centers while fixing one of the m/n centers of P1/P2 in the dissociated state. Each of these three partial partitions can be factored exactly into a 6D partial partition in multiplication with a remaining factor accounting for the small fluctuations while fixing three of the centers of P1, P2, or the P1-P2 complex, respectively. These small fluctuations can be well-approximated as Gaussian, and every 6D partition can be reduced in an exact manner to three problems of 1D sampling, counting the rotations and fluctuations around one of the centers as being fixed. We implement this hSMD approach to the Ras-RalGDS complex, choosing three centers on RalGDS and three on Ras (m = n = 3). At a computing cost of about 71.6 wall-clock hours using 400 computing cores in parallel, we obtained the association energy, -9.2 ± 1.9 kcal/mol on the basis of CHARMM 36 parameters, which well agrees with the experimental data, -8.4 ± 0.2 kcal/mol.
计算蛋白质 - 蛋白质结合亲和力是计算生物物理学/生物化学中的基本挑战之一。即使拥有当今的高性能计算能力,在极高维度的相空间中大量的统计数据也无法得到充分采样。在本文中,我们将一种基于平均力势(PMF)的方法——我们为配体 - 蛋白质结合开发的混合引导分子动力学(hSMD)方法,扩展到蛋白质 - 蛋白质结合问题。对于由两个原体P1和P2组成的蛋白质复合物,我们选择P1的m(≥3)个片段,其m个质心将在选定方向上被引导,以及P2的n(≥3)个片段,其n个质心将在相反方向上被引导。这m + n个质心的坐标构成一个3(m + n)维(3(m + n)D)的相空间。蛋白质、配体、溶剂和溶质的所有其他自由度都自由地服从全原子模型系统的随机动力学。沿着这个相空间中的一条线进行引导分子动力学(SMD),我们得到两个选定状态之间的3(m + n)D PMF差异:一个是结合状态系综中的单个状态,另一个是解离状态系综中的单个状态。这个PMF差异是蛋白质 - 蛋白质结合能的四个贡献因素中的第一个。第二个贡献因素是结合状态下的3(m + n - 1)D部分配分,它考虑了(m + n - 1)个质心在固定P1 - P2复合物的m + n个质心之一时的旋转和波动。另外两个贡献因素是P1的3(m - 1)D部分配分和P2的3(n - 1)D部分配分,它们分别考虑了在解离状态下固定P1/P2的m/n个质心之一时其m - 1或n - 1个质心的旋转和波动。这三个部分配分中的每一个都可以精确地分解为一个6D部分配分乘以一个剩余因子,该剩余因子分别考虑在固定P1、P2或P1 - P2复合物的三个质心时的小波动。这些小波动可以很好地近似为高斯分布,并且每个6D配分都可以精确地简化为三个1D采样问题,计算围绕固定的一个质心的旋转和波动。我们将这种hSMD方法应用于Ras - RalGDS复合物,在RalGDS上选择三个质心,在Ras上选择三个质心(m = n = 3)。使用400个计算核心并行计算,耗时约71.6个挂钟小时,我们基于CHARMM 36参数得到结合能为 -9.2 ± 1.9 kcal/mol,这与实验数据 -8.4 ± 0.2 kcal/mol非常吻合。