Suppr超能文献

基于重复循环渐近自学习和自进化扰动的布谷鸟搜索算法用于函数优化

Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving Disturbance for Function Optimization.

作者信息

Wang Jie-sheng, Li Shu-xia, Song Jiang-di

机构信息

School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114044, China ; National Financial Security and System Equipment Engineering Research Center, University of Science and Technology Liaoning, Anshan 114044, China.

School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114044, China.

出版信息

Comput Intell Neurosci. 2015;2015:374873. doi: 10.1155/2015/374873. Epub 2015 Aug 3.

Abstract

In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy.

摘要

为了提高布谷鸟搜索(CS)算法求解函数优化问题的收敛速度和优化精度,提出了一种基于重复循环渐近自学习和自进化扰动(RC-SSCS)的改进布谷鸟搜索算法。通过构造扰动因子在算法中加入扰动操作,以便在鸟巢位置附近进行更细致、全面的搜索。为了选择合理的重复循环扰动次数,进一步研究了扰动次数的选择。最后,采用六个典型测试函数进行仿真实验,并将本文算法与两种典型的群体智能算法——粒子群优化(PSO)算法和人工蜂群(ABC)算法进行比较。结果表明,改进后的布谷鸟搜索算法具有更好的收敛速度和优化精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8446/4538968/e417d459558d/CIN2015-374873.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验